Hypothesis tests #

Formal hypothesis testing is perhaps the most prominent and widely-employed form of statistical analysis. It is sometimes seen as the most rigorous and definitive part of a statistical analysis, but it is also the source of many statistical controversies. The currently-prevalent approach to hypothesis testing dates to developments that took place between 1925 and 1940, especially the work of Ronald Fisher , Jerzy Neyman , and Egon Pearson .

In recent years, many prominent statisticians have argued that less emphasis should be placed on the formal hypothesis testing approaches developed in the early twentieth century, with a correspondingly greater emphasis on other forms of uncertainty analysis. Our goal here is to give an overview of some of the well-established and widely-used approaches for hypothesis testing. We will also provide some perspectives on how these tools can be effectively used, and discuss their limitations. We will also discuss some new approaches to hypothesis testing that may eventually come to be as prominent as these classical approaches.

A falsifiable hypothesis is a statement, or hypothesis, that can be contradicted with evidence. In empirical (data-driven) research, this evidence will always be obtained through the data. In statistical hypothesis testing, the hypothesis that we formally test is called the null hypothesis . The alternative hypothesis is a second hypothesis that is our proposed explanation for what happens if the null hypothesis is wrong.

Test statistics #

The key element of a statistical hypothesis test is the test statistic , which (like any statistic) is a function of the data. A test statistic takes our entire dataset, and reduces it to one number. This one number ideally should contain all the information in the data that is relevant for assessing the two hypotheses of interest, and exclude any aspects of the data that are irrelevant for assessing the two hypotheses. The test statistic measures evidence against the null hypothesis. Most test statistics are constructed so that a value of zero represents the lowest possible level of evidence against the null hypothesis. Test statistic values that deviate from zero represent greater levels of evidence against the null hypothesis. The larger the magnitude of the test statistic, the stronger the evidence against the null hypothesis.

A major theme of statistical research is to devise effective ways to construct test statistics. Many useful ways to do this have been devised, and there is no single approach that is always the best. In this introductory course, we will focus on tests that starting with an estimate of a quantity that is relevant for assessing the hypotheses, then proceed by standardizing this estimate by dividing it by its standard error. This approach is sometimes referred to as “Wald testing”, after Abraham Wald .

Testing the equality of two proportions #

As a basic example, let’s consider risk perception related to COVID-19. As you will see below, hypothesis testing can appear at first to be a fairly elaborate exercise. Using this example, we describe each aspect of this exercise in detail below.

The data and research question #

The data shown below are simulated but are designed to reflect actual surveys conducted in the United States in March of 2020. Partipants were asked whether they perceive that they have a substantial risk of dying if they are infected with the novel coronavirus. The number of people stating each response, stratified on age, are shown below (only two age groups are shown):

High risk Not high risk
Age < 30 25 202
Age 60-69 30 124

Each subject’s response is binary – they either perceive themselves to be high risk, or not to be at high risk. When working with this type of data, we are usually interested in the proportion of people who provide each response within each stratum (age group). These are conditional proportions, conditioning on the age group. The numerical values of the conditional proportions are given below:

High risk Not high risk
Age < 30 0.110 0.890
Age 60-69 0.195 0.805

There are four conditional proportions in the table above – the proportion of younger people who perceive themselves to be at higher risk, 0.110=25/(25+202); the proportion of younger people who do not perceive themselves to be at high risk, 0.890=202/(25+202); the proportion of older people who perceive themselves to be at high risk 0.195=30/(30+124); and the proportion of older people who do not perceive themselves to be at high risk, 0.805=124/(30+124).

The trend in the data is that younger people perceive themselves to be at lower risk of dying than older people, by a difference of 0.195-0.110=0.085 (in terms of proportions). But is this trend only present in this sample, or is it generalizable to a broader population (say the entire US population)? That is the goal of conducting a statistical hypothesis test in this setting.

The population structure #

Corresponding to our data above is the unobserved population structure, which we can denote as follows

High risk Not high risk
Age < 30 \(p\) \(1-p\)
Age 60-69 \(q\) \(1-q\)

The symbols \(p\) and \(q\) in the table above are population parameters . These are quantitites that we do not know, and wish to assess using the data. In this case, our null hypothesis can be expressed as the statement \(p = q\) . We can estimate \(p\) using the sample proportion \(\hat{p} = 0.110\) , and similarly estimate \(q\) using \(\hat{q} = 0.195\) . However these estimates do not immediately provide us with a way of expressing the evidence relating to the hypothesis that \(p=q\) . This is provided by the test statistic.

A test statistic #

As noted above, a test statistic is a reduction of the data to one number that captures all of the relevant information for assessing the hypotheses. A natural first choice for a test statistic here would be the difference in sample proportions between the two age groups, which is 0.195 - 0.110 = 0.085. There is a difference of 0.085 between the perceived risks of death in the younger and older age groups.

The difference in rates (0.085) does not on its own make a good test statistic, although it is a good start toward obtaining one. The reason for this is that the evidence underlying this difference in rates depends also on the absolute rates (0.110 and 0.195), and on the sample sizes (227 and 154). If we only know that the difference in rates is 0.085, this is not sufficient to evaluate the hypothesis in a statistical manner. A given difference in rates is much stronger evidence if it is obtained from a larger sample. If we have a difference of 0.085 with a very large sample, say one million people, then we should be almost certain that the true rates differ (i.e. the data are highly incompatiable with the hypothesis that \(p=q\) ). If we have the same difference in rates of 0.085, but with a small sample, say 50 people per age group, then there would be almost no evidence for a true difference in the rates (i.e. the data are compatiable with the hypothesis \(p=q\) ).

To address this issue, we need to consider the uncertainty in the estimated rate difference, which is 0.085. Recall that the estimated rate difference is obtained from the sample and therefore is almost certain to deviate somewhat from the true rate difference in the population (which is unknown). Recall from our study of standard errors that the standard error for an estimated proportion is \(\sqrt{p(1-p)/n}\) , where \(p\) is the outcome probability (here the outcome is that a person perceives a high risk of dying), and \(n\) is the sample size.

In the present analysis, we are comparing two proportions, so we have two standard errors. The estimated standard error for the younger people is \(\sqrt{0.11\cdot 0.89/227} \approx 0.021\) . The estimated standard error for the older people is \(\sqrt{0.195\cdot 0.805/154} \approx 0.032\) . Note that both standard errors are estimated, rather than exact, because we are plugging in estimates of the rates (0.11 and 0.195). Also note that the standard error for the rate among older people is greater than that for younger people. This is because the sample size for older people is smaller, and also because the estimated rate for older people is closer to 1/2.

In our previous discussion of standard errors, we saw how standard errors for independent quantities \(A\) and \(B\) can be used to obtain the standard error for the difference \(A-B\) . Applying that result here, we see that the standard error for the estimated difference in rates 0.195-0.11=0.085 is \(\sqrt{0.021^2 + 0.032^2} \approx 0.038\) .

The final step in constructing our test statistic is to construct a Z-score from the estimated difference in rates. As with all Z-scores, we proceed by taking the estimated difference in rates, and then divide it by its standard error. Thus, we get a test statistic value of \(0.085 / 0.038 \approx 2.24\) .

A test statistic value of 2.24 is not very close to zero, so there is some evidence against the null hypothesis. But the strength of this evidence remains unclear. Thus, we must consider how to calibrate this evidence in a way that makes it more interpretable.

Calibrating the evidence in the test statistic #

By the central limit theorem (CLT), a Z-score approximately follows a normal distribution. When the null hypothesis holds, the Z-score approximately follows the standard normal distribution (recall that a standard normal distribution is a normal distribution with expected value equal to 0 and variance equal to 1). If the null hypothesis does not hold, then the test statistic continues to approximately follow a normal distribution, but it is not the standard normal distribution.

A test statistic of zero represents the least possible evidence against the null hypothesis. Here, we will obtain a test statistic of zero when the two proportions being compared are identical, i.e. exactly the same proportions of younger and older people perceive a substantial risk of dying from a disease. Even if the test statistic is exactly zero, this does not guarantee that the null hypothesis is true. However it is the least amount of evidence that the data can present against the null hypothesis.

In a hypothesis testing setting using normally-distrbuted Z-scores, as is the case here (due to the CLT), the standard normal distribution is the reference distribution for our test statistic. If the Z-score falls in the center of the reference distribution, there is no evidence against the null hypothesis. If the Z-score falls into either tail of the reference distribution, then there is evidence against the null distribution, and the further into the tails of the reference distribution the Z-score falls, the greater the evidence.

The most conventional way to quantify the evidence in our test statistic is through a probability called the p-value . The p-value has a somewhat complex definition that many people find difficult to grasp. It is the probability of observing as much or more evidence against the null hypothesis as we actually observe, calculated when the null hypothesis is assumed to be true. We will discuss some ways to think about this more intuitively below.

For our purposes, “evidence against the null hypothesis” is reflected in how far into the tails of the reference distribution the Z-score (test statistic) falls. We observed a test statistic of 2.24 in our COVID risk perception analysis. Recall that due to the “empirical rule”, 95% of the time, a draw from a standard normal distribution falls between -2 and 2. Thus, the p-value must be less than 0.05, since 2.24 falls outside this interval. The p-value can be calculated using a computer, in this case it happens to be approximately 0.025.

As stated above, the p-value tells us how likely it would be for us to obtain as much evidence against the the null hypothesis as we observed in our actual data analysis, if we were certain that the null hypothesis were true. When the null hypothesis holds, any evidence against the null hypothesis is spurious. Thus, we will want to see stronger evidence against the null from our actual analysis than we would see if we know that the null hypothesis were true. A smaller p-value therefore reflects more evidence against the null hypothesis than a larger p-value.

By convention, p-values of 0.05 or smaller are considered to represent sufficiently strong evidence against the null hypothesis to make a finding “statistically significant”. This threshold of 0.05 was chosen arbitrarily 100 years ago, and there is no objective reason for it. In recent years, people have argued that either a lesser or a greater p-value threshold should be used. But largely due to convention, the practice of deeming p-values smaller than 0.05 to be statistically significant continues.

Summary of this example #

Here is a restatement of the above discussion, using slightly different language. In our analysis of COVID risk perceptions, we found a difference in proportions of 0.085 between younger and older subjects, with younger people perceiving a lower risk of dying. This is a difference based on the sample of data that we observed, but what we really want to know is whether there is a difference in COVID risk perception in the population (say, all US adults).

Suppose that in fact there is no difference in risk perception between younger and older people. For instance, suppose that in the population, 15% of people believe that they have a substantial risk of dying should they become infected with the novel coronavirus, regardless of their age. Even though the rates are equal in this imaginary population (both being 15%), the rates in our sample would typically not be equal. Around 3% of the time (0.024=2.4% to be exact), if the rates are actually equal in the population, we would see a test statistic that is 2.4 or larger. Since 3% represents a fairly rare event, we can conclude that our observed data are not compatible with the null hypothesis. We can also say that there is statistically significant evidence against the null hypothesis, and that we have “rejected” the null hypothesis at the 3% level.

In this data analysis, as in any data analysis, we cannot confirm definitively that the alternative hypothesis is true. But based on our data and the analysis performed above, we can claim that there is substantial evidence against the null hypothesis, using standard criteria for what is considered to be “substantial evidence”.

Comparison of means #

A very common setting where hypothesis testing is used arises when we wish to compare the means of a quantitative measurement obtained for two populations. Imagine, for example, that we have two ways of manufacturing a battery, and we wish to assess which approach yields batteries that are longer-lasting in actual use. To do this, suppose we obtain data that tells us the number of charge cycles that were completed in 200 batteries of type A, and in 300 batteries of type B. For the test developed below to be meaningful, the data must be independent and identically distributed samples.

The raw data for this study consists of 500 numbers, but it turns out that the most relevant information from the data is contained in the sample means and sample standard deviations computed within each battery type. Note that this is a huge reduction in complexity, since we started with 500 measurements and are able to summarize this down to just four numbers.

Suppose the summary statistics are as follows, where \(\bar{x}\) , \(\hat{\sigma}_x\) , and \(n\) denote the sample mean, sample standard deviation, and sample size, respectively.

Type \(\bar{x}\) \(\hat{\sigma}_x\) \(n\)
420 70 200
403 90 300

The simplest measure comparing the two manufacturing approaches is the difference 420 - 403 = 17. That is, batteries of type A tend to have 17 more charge cycles compared to batteries of type B. This difference is present in our sample, but is it also true that the entire population of type A batteries has more charge cycles than the entire population of type B batteries? That is the goal of conducting a hypothesis test.

The next step in the present analysis is to divide the mean difference, which is 17, by its standard error. As we have seen, the standard error of the mean, or SEM, is \(\sigma/n\) , where \(\sigma\) is the standard deviation and \(n\) is the sample size. Since \(\sigma\) is almost never known, we plug in its estimate \(\hat{\sigma}\) . For the type A batteries, the estimated SEM is thus \(70/\sqrt{200} \approx 4.95\) , and for the type B batteries the estimated SEM is \(90/\sqrt{300} \approx 5.2\) .

Since we are comparing two estimated means that are obtained from independent samples, we can pool the standard deviations to obtain an overall standard deviation of \(\sqrt{4.95^2 + 5.2^2} \approx 7.18\) . We can now obtain our test statistic \(17/7.18 \approx 2.37\) .

The test statistic can be calibrated against a standard normal reference distribution. The probability of observing a standard normal value that is greater in magnitude than 2.37 is 0.018 (this can be obtained from a computer). This is the p-value, and since it is smaller than the conventional threshold of 0.05, we can claim that there is a statistically significant difference between the average number of charge cycles for the two types of batteries, with the A batteries having more charge cycles on average.

The analysis illustrated here is called a two independent samples Z-test , or just a two sample Z-test . It may be the most commonly employed of all statistical tests. It is also common to see the very similar two sample t-test , which is different only in that it uses the Student t distribution rather than the normal (Gaussian) distribution to calculate the p-values. In fact, there are quite a few minor variations on this testing framework, including “one sided” and “two sided” tests, and tests based on different ways of pooling the variance. Due to the CLT, if the sample size is modestly large (which is the case here), the results of all of these tests will be almost identical. For simplicity, we only cover the Z-test in this course.

Assessment of a correlation #

The tests for comparing proportions and means presented above are quite similar in many ways. To provide one more example of a hypothesis test that is somewhat different, we consider a test for a correlation coefficient.

Recall that the sample correlation coefficient \(\hat{r}\) is used to assess the relationship, or association, between two quantities X and Y that are measured on the same units. For example, we may ask whether two biomarkers, serum creatinine and D-dimer, are correlated with each other. These biomarkers are both commonly used in medical settings and are obtained using blood tests. D-dimer is used to assess whether a person has blood clots, and serum creatinine is used to measure kidney performance.

Suppose we are interested in whether there is a correlation in the population between D-dimer and serum creatinine. The population correlation coefficient between these two quantitites can be denoted \(r\) . Our null hypothesis is \(r=0\) . Suppose that we observe a sample correlation coefficient of \(\hat{r}=0.15\) , using an independent and identically distributed sample of pairs \((x, y)\) , where \(x\) is a D-dimer measurement and \(y\) is a serum creatinine measurement. Are these data consistent with the null hypothesis?

As above, we proceed by constructing a test statistic by taking the estimated statistic and dividing it by its standard error. The approximate standard error for \(\hat{r}\) is \(1/\sqrt{n}\) , where \(n\) is the sample size. The test statistic is therefore \(\sqrt{n}\cdot \hat{r} \approx 1.48\) .

We now calibrate this test statistic by comparing it to a standard normal reference distribution. Recall from the empirical rule that 5% of the time, a standard normal value falls outside the interval (-2, 2). Therefore, if the test statistic is smaller than 2 in magnitude, as is the case here, its p-value is greater than 0.05. Thus, in this case we know that the p-value will exceed 0.05 without calculating it, and therefore there is no basis for claiming that D-dimer and serum creatinine levels are correlated in this population.

Sampling properties of p-values #

A p-value is the most common way of calibrating evidence. Smaller p-values indicate stronger evidence against a null hypothesis. By convention, if the p-value is smaller than some threshold, usually 0.05, we reject the null hypothesis and declare a finding to be “statistically significant”. How can we understand more deeply what this means? One major concern should be obtaining a small p-value when the null hypothesis is true. If the null hypothesis is true, then it is incorrect to reject it. If we reject the null hypothesis, we are making a false claim. This can never be prevented with complete certainty, but we would like to have a very clear understanding of how likely it is to reject the null hypothesis when the null hypothesis is in fact true.

P-values have a special property that when the null distribution is true, the probability of observing a p-value smaller than 0.05 is 0.05 (5%). In fact, the probability of observing a p-value smaller than \(t\) is equal to \(t\) , for any threshold \(t\) . For example, the probability of observing a p-value smaller than 0.1, when the null hypothesis is true, is 10%.

This fact gives a more concrete understanding of how strong the evidence is for a particular p-value. If we always reject the null hypothesis when the p-value is 0.1 or smaller, then over the long run we will reject the null hypothesis 10% of the time when the null hypothesis is true. If we always reject the null hypothesis when the p-value is 0.05 or smaller, then over the long run we will reject the null hypothesis 5% of the time when the null hypothesis is true.

The approach to hypothesis testing discussed above largely follows the framework developed by RA Fisher around 1925. Note that although we mentioned the alternative hypothesis above, we never actually used it. A more elaborate approach to hypothesis testing was developed somewhat later by Egon Pearson and Jerzy Neyman. The “Neyman-Pearson” approach to hypothesis testing is even more formal than Fisher’s approach, and is most suited to highly planned research efforts in which the study is carefully designed, then executed. While ideally all research projects should be carried out this way, in reality we often conduct research using data that are already available, rather than using data that are specifically collected to address the research question.

Neyman-Pearson hypothesis testing involves specifying an alternative hypothesis that we anticipate encountering. Usually this alternative hypothesis represents a realistic guess about what we might find once the data are collected. In each of the three examples above, imagine that the data are not yet collected, and we are asked to specify an alternative hypothesis. We may arrive at the following:

In comparing risk perceptions for COVID, we may anticipate that older people will perceive a 30% risk of dying, and younger people will anticipate a 5% risk of dying.

In comparing the number of charge cycles for two types of batteries, we may anticipate that batter type A will have on average 500 charge cycles, and battery type B will have on average 400 charge cycles.

In assessing the correlation between D-dimer and serum creatinine levels, we may anticipate a correlation of 0.3.

Note that none of the numbers stated here are data-driven – they are specified before any data are collected, so they do not match the results from the data, which were collected only later. These alternative hypotheses are all essentially speculations, based perhaps on related data or theoretical considerations.

There are several benefits of specifying an explicit alternative hypothesis, as done here, even though it is not strictly necessary and can be avoided entirely by adopting Fisher’s approach to hypothesis testing. One benefit of specifying an alternative hypothesis is that we can use it to assess the power of our planned study, which can in turn inform the design of the study, in particular the sample size. The power is the probability of rejecting the null hypothesis when the alternative hypothesis is true. That is, it is the probability of discovering something real. The power should be contrasted with the level of a hypothesis test, which is the probability of rejecting the null hypothesis when the null hypothesis is true. That is, the level is the probability of “discovering” something that is not real.

To calculate the power, recall that for many of the test statistics that we are considering here, the test statistic has the form \(\hat{\theta}/{\rm SE}(\hat{\theta})\) , where \(\hat{\theta}\) is an estimate. For example, \(\hat{\theta}\) ) may be the correlation coefficient between D-dimer and serum creatinine levels. As stated above, the power is the probability of rejecting the null hypothesis when the alternative hypothesis is true. Suppose we decide to reject the null hypothesis when the test statistic is greater than 2, which is approximately equivalent to rejecting the null hypothesis when the p-value is less than 0.05. The following calculation tells us how to obtain the power in this setting:

Under the alternative hypothesis, \(\sqrt{n}(\hat{r} - r)\) approximately follows a standard normal distribution. Therefore, if \(r\) and \(n\) are given, we can easily use the computer to obtain the probability of observing a value greater than \(2 - \sqrt{n}r\) . This gives us the power of the test. For example, if we anticipate \(r=0.3\) and plan to collect data for \(n=100\) observations, the power is 0.84. This is generally considered to be good power – if the true value of \(r\) is in fact 0.3, we would reject the null hypothesis 84% of the time.

A study usually has poor power because it has too small of a sample size. Poorly powered studies can be very misleading, but since large sample sizes are expensive to collect, a lot of research is conducted using sample sizes that yield moderate or even low power. If a study has low power, it is unlikely to reject the null hypothesis even when the alternative hypothesis is true, but it remains possible to reject the null hypothesis when the null hypothesis is true (usually this probability is 5%). Therefore the most likely outcome of a poorly powered study may be an incorrectly rejected null hypothesis.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

statistical hypothesis research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference

  • August 2019
  • Machine Learning and Knowledge Extraction 1(3):945-961
  • 1(3):945-961

Frank Emmert-Streib at Tampere University

  • Tampere University

Matthias Dehmer at TU Wien

Abstract and Figures

Intuitive example explaining the basic idea underlying an one-sample hypothesis test.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Aissa Bensattalah

Youcef Belhadji

  • Adarsh K. Srivastav

Tim Cech

  • Yizhang Zhu

Nan Tang

  • INFORM FUSION

Houda Orchi

  • Abdoulaye Baniré Diallo

Halima Elbiaze

  • Paul Lintilhac
  • Joshua Ackerman

George Cybenko

  • Barbara Piotrowska

Krzysztof Isajenko

  • Marzena Rachwał
  • Ind Psychiatry J

Suprakash Chaudhury

  • Jitendra Bhawalkar

Frank Emmert-Streib

  • Ronald L. Wasserstein
  • Allen L. Schirm
  • Nicole A. Lazar
  • Daniel J. Benjamin
  • James O. Berger

Valentin Amrhein

  • Blake McShane
  • E. S. PEARSON
  • Michael Baron
  • Bradley Efron
  • R.J. Tibshirani
  • John P. A. Ioannidis

Dirk Helbing

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, chi-square test, what is hypothesis testing in statistics types and examples, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, mean squared error: overview, examples, concepts and more, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, hypothesis testing in statistics - types | examples.

Lesson 10 of 24 By Avijeet Biswal

What Is Hypothesis Testing in Statistics? Types and Examples

Table of Contents

In today’s data-driven world, decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis and hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

Importance of Hypothesis Testing in Data Analysis

Here is what makes hypothesis testing so important in data analysis and why it is key to making better decisions:

Avoiding Misleading Conclusions (Type I and Type II Errors)

One of the biggest benefits of hypothesis testing is that it helps you avoid jumping to the wrong conclusions. For instance, a Type I error could occur if a company launches a new product thinking it will be a hit, only to find out later that the data misled them. A Type II error might happen when a company overlooks a potentially successful product because their testing wasn’t thorough enough. By setting up the right significance level and carefully calculating the p-value, hypothesis testing minimizes the chances of these errors, leading to more accurate results.

Making Smarter Choices

Hypothesis testing is key to making smarter, evidence-based decisions. Let’s say a city planner wants to determine if building a new park will increase community engagement. By testing the hypothesis using data from similar projects, they can make an informed choice. Similarly, a teacher might use hypothesis testing to see if a new teaching method actually improves student performance. It’s about taking the guesswork out of decisions and relying on solid evidence instead.

Optimizing Business Tactics

In business, hypothesis testing is invaluable for testing new ideas and strategies before fully committing to them. For example, an e-commerce company might want to test whether offering free shipping increases sales. By using hypothesis testing, they can compare sales data from customers who received free shipping offers and those who didn’t. This allows them to base their business decisions on data, not hunches, reducing the risk of costly mistakes.

Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • μ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternative Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps in Hypothesis Testing

Hypothesis testing is a statistical method to determine if there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. Here’s a breakdown of the typical steps involved in hypothesis testing:

Formulate Hypotheses

  • Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test.
  • Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to prove true. It is usually considered the opposite of the null hypothesis.

Choose the Significance Level (α)

The significance level, often denoted by alpha (α), is the probability of rejecting the null hypothesis when it is true. Common choices for α are 0.05 (5%), 0.01 (1%), and 0.10 (10%).

Select the Appropriate Test

Choose a statistical test based on the type of data and the hypothesis. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis. The selection depends on data type, distribution, sample size, and whether the hypothesis is one-tailed or two-tailed.

Collect Data

Gather the data that will be analyzed in the test. To infer conclusions accurately, this data should be representative of the population.

Calculate the Test Statistic

Based on the collected data and the chosen test, calculate a test statistic that reflects how much the observed data deviates from the null hypothesis.

Determine the p-value

The p-value is the probability of observing test results at least as extreme as the results observed, assuming the null hypothesis is correct. It helps determine the strength of the evidence against the null hypothesis.

Make a Decision

Compare the p-value to the chosen significance level:

  • If the p-value ≤ α: Reject the null hypothesis, suggesting sufficient evidence in the data supports the alternative hypothesis.
  • If the p-value > α: Do not reject the null hypothesis, suggesting insufficient evidence to support the alternative hypothesis.

Report the Results

Present the findings from the hypothesis test, including the test statistic, p-value, and the conclusion about the hypotheses.

Perform Post-hoc Analysis (if necessary)

Depending on the results and the study design, further analysis may be needed to explore the data more deeply or to address multiple comparisons if several hypotheses were tested simultaneously.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

3. Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

ANOVA , or Analysis of Variance, is a statistical method used to compare the means of three or more groups. It’s particularly useful when you want to see if there are significant differences between multiple groups. For instance, in business, a company might use ANOVA to analyze whether three different stores are performing differently in terms of sales. It’s also widely used in fields like medical research and social sciences, where comparing group differences can provide valuable insights.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Become a Data Scientist through hands-on learning with hackathons, masterclasses, webinars, and Ask-Me-Anything sessions! Start learning!

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Serious About Success? Don't Settle for Less

Serious About Success? Don't Settle for Less

Practice Problems on Hypothesis Testing

Here are the practice problems on hypothesis testing that will help you understand how to apply these concepts in real-world scenarios:

A telecom service provider claims that customers spend an average of ₹400 per month, with a standard deviation of ₹25. However, a random sample of 50 customer bills shows a mean of ₹250 and a standard deviation of ₹15. Does this sample data support the service provider’s claim?

Solution: Let’s break this down:

  • Null Hypothesis (H0): The average amount spent per month is ₹400.
  • Alternate Hypothesis (H1): The average amount spent per month is not ₹400.
  • Population Standard Deviation (σ): ₹25
  • Sample Size (n): 50
  • Sample Mean (x̄): ₹250

1. Calculate the z-value:

z=250-40025/50 −42.42

2. Compare with critical z-values: For a 5% significance level, critical z-values are -1.96 and +1.96. Since -42.42 is far outside this range, we reject the null hypothesis. The sample data suggests that the average amount spent is significantly different from ₹400.

Out of 850 customers, 400 made online grocery purchases. Can we conclude that more than 50% of customers are moving towards online grocery shopping?

Solution: Here’s how to approach it:

  • Proportion of customers who shopped online (p): 400 / 850 = 0.47
  • Null Hypothesis (H0): The proportion of online shoppers is 50% or more.
  • Alternate Hypothesis (H1): The proportion of online shoppers is less than 50%.
  • Sample Size (n): 850
  • Significance Level (α): 5%

z=p-PP(1-P)/n

z=0.47-0.500.50.5/850  −1.74

2. Compare with the critical z-value: For a 5% significance level (one-tailed test), the critical z-value is -1.645. Since -1.74 is less than -1.645, we reject the null hypothesis. This means the data does not support the idea that most customers are moving towards online grocery shopping.

In a study of code quality, Team A has 250 errors in 1000 lines of code, and Team B has 300 errors in 800 lines of code. Can we say Team B performs worse than Team A?

Solution: Let’s analyze it:

  • Proportion of errors for Team A (pA): 250 / 1000 = 0.25
  • Proportion of errors for Team B (pB): 300 / 800 = 0.375
  • Null Hypothesis (H0): Team B’s error rate is less than or equal to Team A’s.
  • Alternate Hypothesis (H1): Team B’s error rate is greater than Team A’s.
  • Sample Size for Team A (nA): 1000
  • Sample Size for Team B (nB): 800

p=nApA+nBpBnA+nB

p=10000.25+8000.3751000+800 ≈ 0.305

z=​pA−pB​p(1-p)(1nA+1nB)

z=​0.25−0.375​0.305(1-0.305) (11000+1800) ≈ −5.72

2. Compare with the critical z-value: For a 5% significance level (one-tailed test), the critical z-value is +1.645. Since -5.72 is far less than +1.645, we reject the null hypothesis. The data indicates that Team B’s performance is significantly worse than Team A’s.

Our Data Scientist Master's Program will help you master core topics such as R, Python, Machine Learning, Tableau, Hadoop, and Spark. Get started on your journey today!

Applications of Hypothesis Testing

Apart from the practical problems, let's look at the real-world applications of hypothesis testing across various fields:

Medicine and Healthcare

In medicine, hypothesis testing plays a pivotal role in assessing the success of new treatments. For example, researchers may want to find out if a new exercise regimen improves heart health. By comparing data from patients who followed the program to those who didn’t, they can determine if the exercise significantly improves health outcomes. Such rigorous testing allows medical professionals to rely on proven methods rather than assumptions.

Quality Control and Manufacturing

In manufacturing, ensuring product quality is vital, and hypothesis testing helps maintain those standards. Suppose a beverage company introduces a new bottling process and wants to verify if it reduces contamination. By analyzing samples from the new and old processes, hypothesis testing can reveal whether the new method reduces the risk of contamination. This allows manufacturers to implement improvements that enhance product safety and quality confidently.

Education and Learning

In education and learning, hypothesis testing is a tool to evaluate the impact of innovative teaching techniques. Imagine a situation where teachers introduce project-based learning to boost critical thinking skills. By comparing the performance of students who engaged in project-based learning with those in traditional settings, educators can test their hypothesis. The results can help educators make informed choices about adopting new teaching strategies.

Environmental Science

Hypothesis testing is essential in environmental science for evaluating the effectiveness of conservation measures. For example, scientists might explore whether a new water management strategy improves river health. By collecting and comparing data on water quality before and after the implementation of the strategy, they can determine whether the intervention leads to positive changes. Such findings are crucial for guiding environmental decisions that have long-term impacts.

Marketing and Advertising

In marketing, businesses use hypothesis testing to refine their approaches. For instance, a clothing brand might test if offering limited-time discounts increases customer loyalty. By running campaigns with and without the discount and analyzing the outcomes, they can assess if the strategy boosts customer retention. Data-driven insights from hypothesis testing enable companies to design marketing strategies that resonate with their audience and drive growth.

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

Learn All The Tricks Of The BI Trade

Learn All The Tricks Of The BI Trade

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore the Post Graduate Program in Data Science.

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is H0 and H1 in statistics?

In statistics, H0​ and H1​ represent the null and alternative hypotheses. The null hypothesis, H0​, is the default assumption that no effect or difference exists between groups or conditions. The alternative hypothesis, H1​, is the competing claim suggesting an effect or a difference. Statistical tests determine whether to reject the null hypothesis in favor of the alternative hypothesis based on the data.

3. What is a simple hypothesis with an example?

A simple hypothesis is a specific statement predicting a single relationship between two variables. It posits a direct and uncomplicated outcome. For example, a simple hypothesis might state, "Increased sunlight exposure increases the growth rate of sunflowers." Here, the hypothesis suggests a direct relationship between the amount of sunlight (independent variable) and the growth rate of sunflowers (dependent variable), with no additional variables considered.

4. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

5. What software tools can assist with hypothesis testing?

Several software tools offering distinct features can help with hypothesis testing. R and RStudio are popular for their advanced statistical capabilities. The Python ecosystem, including libraries like SciPy and Statsmodels, also supports hypothesis testing. SAS and SPSS are well-established tools for comprehensive statistical analysis. For basic testing, Excel offers simple built-in functions.

6. How do I interpret the results of a hypothesis test?

Interpreting hypothesis test results involves comparing the p-value to the significance level (alpha). If the p-value is less than or equal to alpha, you can reject the null hypothesis, indicating statistical significance. This suggests that the observed effect is unlikely to have occurred by chance, validating your analysis findings.

7. Why is sample size important in hypothesis testing?

Sample size is crucial in hypothesis testing as it affects the test’s power. A larger sample size increases the likelihood of detecting a true effect, reducing the risk of Type II errors. Conversely, a small sample may lack the statistical power needed to identify differences, potentially leading to inaccurate conclusions.

8. Can hypothesis testing be used for non-numerical data?

Yes, hypothesis testing can be applied to non-numerical data through non-parametric tests. These tests are ideal when data doesn't meet parametric assumptions or when dealing with categorical data. Non-parametric tests, like the Chi-square or Mann-Whitney U test, provide robust methods for analyzing non-numerical data and drawing meaningful conclusions.

9. How do I choose the proper hypothesis test?

Selecting the right hypothesis test depends on several factors: the objective of your analysis, the type of data (numerical or categorical), and the sample size. Consider whether you're comparing means, proportions, or associations, and whether your data follows a normal distribution. The correct choice ensures accurate results tailored to your research question.

Find our PL-300 Microsoft Power BI Certification Training Online Classroom training classes in top cities:

NameDatePlace
12 Oct -27 Oct 2024,
Weekend batch
Your City
26 Oct -10 Nov 2024,
Weekend batch
Your City
9 Nov -24 Nov 2024,
Weekend batch
Your City

About the Author

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.25(Suppl 2); 2021 May

An Introduction to Statistics: Choosing the Correct Statistical Test

Priya ranganathan.

1 Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India

The choice of statistical test used for analysis of data from a research study is crucial in interpreting the results of the study. This article gives an overview of the various factors that determine the selection of a statistical test and lists some statistical testsused in common practice.

How to cite this article: Ranganathan P. An Introduction to Statistics: Choosing the Correct Statistical Test. Indian J Crit Care Med 2021;25(Suppl 2):S184–S186.

In a previous article in this series, we looked at different types of data and ways to summarise them. 1 At the end of the research study, statistical analyses are performed to test the hypothesis and either prove or disprove it. The choice of statistical test needs to be carefully performed since the use of incorrect tests could lead to misleading conclusions. Some key questions help us to decide the type of statistical test to be used for analysis of study data. 2

W hat is the R esearch H ypothesis ?

Sometimes, a study may just describe the characteristics of the sample, e.g., a prevalence study. Here, the statistical analysis involves only descriptive statistics . For example, Sridharan et al. aimed to analyze the clinical profile, species distribution, and susceptibility pattern of patients with invasive candidiasis. 3 They used descriptive statistics to express the characteristics of their study sample, including mean (and standard deviation) for normally distributed data, median (with interquartile range) for skewed data, and percentages for categorical data.

Studies may be conducted to test a hypothesis and derive inferences from the sample results to the population. This is known as inferential statistics . The goal of inferential statistics may be to assess differences between groups (comparison), establish an association between two variables (correlation), predict one variable from another (regression), or look for agreement between measurements (agreement). Studies may also look at time to a particular event, analyzed using survival analysis.

A re the C omparisons M atched (P aired ) or U nmatched (U npaired )?

Observations made on the same individual (before–after or comparing two sides of the body) are usually matched or paired . Comparisons made between individuals are usually unpaired or unmatched . Data are considered paired if the values in one set of data are likely to be influenced by the other set (as can happen in before and after readings from the same individual). Examples of paired data include serial measurements of procalcitonin in critically ill patients or comparison of pain relief during sequential administration of different analgesics in a patient with osteoarthritis.

W hat are the T ype of D ata B eing M easured ?

The test chosen to analyze data will depend on whether the data are categorical (and whether nominal or ordinal) or numerical (and whether skewed or normally distributed). Tests used to analyze normally distributed data are known as parametric tests and have a nonparametric counterpart that is used for data, which is distribution-free. 4 Parametric tests assume that the sample data are normally distributed and have the same characteristics as the population; nonparametric tests make no such assumptions. Parametric tests are more powerful and have a greater ability to pick up differences between groups (where they exist); in contrast, nonparametric tests are less efficient at identifying significant differences. Time-to-event data requires a special type of analysis, known as survival analysis.

H ow M any M easurements are B eing C ompared ?

The choice of the test differs depending on whether two or more than two measurements are being compared. This includes more than two groups (unmatched data) or more than two measurements in a group (matched data).

T ests for C omparison

( Table 1 lists the tests commonly used for comparing unpaired data, depending on the number of groups and type of data. As an example, Megahed and colleagues evaluated the role of early bronchoscopy in mechanically ventilated patients with aspiration pneumonitis. 5 Patients were randomized to receive either early bronchoscopy or conventional treatment. Between groups, comparisons were made using the unpaired t test for normally distributed continuous variables, the Mann–Whitney U -test for non-normal continuous variables, and the chi-square test for categorical variables. Chowhan et al. compared the efficacy of left ventricular outflow tract velocity time integral (LVOTVTI) and carotid artery velocity time integral (CAVTI) as predictors of fluid responsiveness in patients with sepsis and septic shock. 6 Patients were divided into three groups— sepsis, septic shock, and controls. Since there were three groups, comparisons of numerical variables were done using analysis of variance (for normally distributed data) or Kruskal–Wallis test (for skewed data).

Tests for comparison of unpaired data

NominalChi-square test or Fisher's exact test
Ordinal or skewedMann–Whitney -test (Wilcoxon rank sum test)Kruskal–Wallis test
Normally distributedUnpaired -testAnalysis of variance (ANOVA)

A common error is to use multiple unpaired t -tests for comparing more than two groups; i.e., for a study with three treatment groups A, B, and C, it would be incorrect to run unpaired t -tests for group A vs B, B vs C, and C vs A. The correct technique of analysis is to run ANOVA and use post hoc tests (if ANOVA yields a significant result) to determine which group is different from the others.

( Table 2 lists the tests commonly used for comparing paired data, depending on the number of groups and type of data. As discussed above, it would be incorrect to use multiple paired t -tests to compare more than two measurements within a group. In the study by Chowhan, each parameter (LVOTVTI and CAVTI) was measured in the supine position and following passive leg raise. These represented paired readings from the same individual and comparison of prereading and postreading was performed using the paired t -test. 6 Verma et al. evaluated the role of physiotherapy on oxygen requirements and physiological parameters in patients with COVID-19. 7 Each patient had pretreatment and post-treatment data for heart rate and oxygen supplementation recorded on day 1 and day 14. Since data did not follow a normal distribution, they used Wilcoxon's matched pair test to compare the prevalues and postvalues of heart rate (numerical variable). McNemar's test was used to compare the presupplemental and postsupplemental oxygen status expressed as dichotomous data in terms of yes/no. In the study by Megahed, patients had various parameters such as sepsis-related organ failure assessment score, lung injury score, and clinical pulmonary infection score (CPIS) measured at baseline, on day 3 and day 7. 5 Within groups, comparisons were made using repeated measures ANOVA for normally distributed data and Friedman's test for skewed data.

Tests for comparison of paired data

NominalMcNemar's testCochran's Q
Ordinal or skewedWilcoxon signed rank testFriedman test
Normally distributedPaired -testRepeated measures ANOVA

T ests for A ssociation between V ariables

( Table 3 lists the tests used to determine the association between variables. Correlation determines the strength of the relationship between two variables; regression allows the prediction of one variable from another. Tyagi examined the correlation between ETCO 2 and PaCO 2 in patients with chronic obstructive pulmonary disease with acute exacerbation, who were mechanically ventilated. 8 Since these were normally distributed variables, the linear correlation between ETCO 2 and PaCO 2 was determined by Pearson's correlation coefficient. Parajuli et al. compared the acute physiology and chronic health evaluation II (APACHE II) and acute physiology and chronic health evaluation IV (APACHE IV) scores to predict intensive care unit mortality, both of which were ordinal data. Correlation between APACHE II and APACHE IV score was tested using Spearman's coefficient. 9 A study by Roshan et al. identified risk factors for the development of aspiration pneumonia following rapid sequence intubation. 10 Since the outcome was categorical binary data (aspiration pneumonia— yes/no), they performed a bivariate analysis to derive unadjusted odds ratios, followed by a multivariable logistic regression analysis to calculate adjusted odds ratios for risk factors associated with aspiration pneumonia.

Tests for assessing the association between variables

Both variables normally distributedPearson's correlation coefficient
One or both variables ordinal or skewedSpearman's or Kendall's correlation coefficient
Nominal dataChi-square test; odds ratio or relative risk (for binary outcomes)
Continuous outcomeLinear regression analysis
Categorical outcome (binary)Logistic regression analysis

T ests for A greement between M easurements

( Table 4 outlines the tests used for assessing agreement between measurements. Gunalan evaluated concordance between the National Healthcare Safety Network surveillance criteria and CPIS for the diagnosis of ventilator-associated pneumonia. 11 Since both the scores are examples of ordinal data, Kappa statistics were calculated to assess the concordance between the two methods. In the previously quoted study by Tyagi, the agreement between ETCO 2 and PaCO 2 (both numerical variables) was represented using the Bland–Altman method. 8

Tests for assessing agreement between measurements

Categorical dataCohen's kappa
Numerical dataIntraclass correlation coefficient (numerical) and Bland–Altman plot (graphical display)

T ests for T ime-to -E vent D ata (S urvival A nalysis )

Time-to-event data represent a unique type of data where some participants have not experienced the outcome of interest at the time of analysis. Such participants are considered to be “censored” but are allowed to contribute to the analysis for the period of their follow-up. A detailed discussion on the analysis of time-to-event data is beyond the scope of this article. For analyzing time-to-event data, we use survival analysis (with the Kaplan–Meier method) and compare groups using the log-rank test. The risk of experiencing the event is expressed as a hazard ratio. Cox proportional hazards regression model is used to identify risk factors that are significantly associated with the event.

Hasanzadeh evaluated the impact of zinc supplementation on the development of ventilator-associated pneumonia (VAP) in adult mechanically ventilated trauma patients. 12 Survival analysis (Kaplan–Meier technique) was used to calculate the median time to development of VAP after ICU admission. The Cox proportional hazards regression model was used to calculate hazard ratios to identify factors significantly associated with the development of VAP.

The choice of statistical test used to analyze research data depends on the study hypothesis, the type of data, the number of measurements, and whether the data are paired or unpaired. Reviews of articles published in medical specialties such as family medicine, cytopathology, and pain have found several errors related to the use of descriptive and inferential statistics. 12 – 15 The statistical technique needs to be carefully chosen and specified in the protocol prior to commencement of the study, to ensure that the conclusions of the study are valid. This article has outlined the principles for selecting a statistical test, along with a list of tests used commonly. Researchers should seek help from statisticians while writing the research study protocol, to formulate the plan for statistical analysis.

Priya Ranganathan https://orcid.org/0000-0003-1004-5264

Source of support: Nil

Conflict of interest: None

R eferences

Frequently asked questions

What’s the difference between a research hypothesis and a statistical hypothesis.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Frequently asked questions: Statistics

As the degrees of freedom increase, Student’s t distribution becomes less leptokurtic , meaning that the probability of extreme values decreases. The distribution becomes more and more similar to a standard normal distribution .

The three categories of kurtosis are:

  • Mesokurtosis : An excess kurtosis of 0. Normal distributions are mesokurtic.
  • Platykurtosis : A negative excess kurtosis. Platykurtic distributions are thin-tailed, meaning that they have few outliers .
  • Leptokurtosis : A positive excess kurtosis. Leptokurtic distributions are fat-tailed, meaning that they have many outliers.

Probability distributions belong to two broad categories: discrete probability distributions and continuous probability distributions . Within each category, there are many types of probability distributions.

Probability is the relative frequency over an infinite number of trials.

For example, the probability of a coin landing on heads is .5, meaning that if you flip the coin an infinite number of times, it will land on heads half the time.

Since doing something an infinite number of times is impossible, relative frequency is often used as an estimate of probability. If you flip a coin 1000 times and get 507 heads, the relative frequency, .507, is a good estimate of the probability.

Categorical variables can be described by a frequency distribution. Quantitative variables can also be described by a frequency distribution, but first they need to be grouped into interval classes .

A histogram is an effective way to tell if a frequency distribution appears to have a normal distribution .

Plot a histogram and look at the shape of the bars. If the bars roughly follow a symmetrical bell or hill shape, like the example below, then the distribution is approximately normally distributed.

Frequency-distribution-Normal-distribution

You can use the CHISQ.INV.RT() function to find a chi-square critical value in Excel.

For example, to calculate the chi-square critical value for a test with df = 22 and α = .05, click any blank cell and type:

=CHISQ.INV.RT(0.05,22)

You can use the qchisq() function to find a chi-square critical value in R.

For example, to calculate the chi-square critical value for a test with df = 22 and α = .05:

qchisq(p = .05, df = 22, lower.tail = FALSE)

You can use the chisq.test() function to perform a chi-square test of independence in R. Give the contingency table as a matrix for the “x” argument. For example:

m = matrix(data = c(89, 84, 86, 9, 8, 24), nrow = 3, ncol = 2)

chisq.test(x = m)

You can use the CHISQ.TEST() function to perform a chi-square test of independence in Excel. It takes two arguments, CHISQ.TEST(observed_range, expected_range), and returns the p value.

Chi-square goodness of fit tests are often used in genetics. One common application is to check if two genes are linked (i.e., if the assortment is independent). When genes are linked, the allele inherited for one gene affects the allele inherited for another gene.

Suppose that you want to know if the genes for pea texture (R = round, r = wrinkled) and color (Y = yellow, y = green) are linked. You perform a dihybrid cross between two heterozygous ( RY / ry ) pea plants. The hypotheses you’re testing with your experiment are:

  • This would suggest that the genes are unlinked.
  • This would suggest that the genes are linked.

You observe 100 peas:

  • 78 round and yellow peas
  • 6 round and green peas
  • 4 wrinkled and yellow peas
  • 12 wrinkled and green peas

Step 1: Calculate the expected frequencies

To calculate the expected values, you can make a Punnett square. If the two genes are unlinked, the probability of each genotypic combination is equal.

RRYY RrYy RRYy RrYY
RrYy rryy Rryy rrYy
RRYy Rryy RRyy RrYy
RrYY rrYy RrYy rrYY

The expected phenotypic ratios are therefore 9 round and yellow: 3 round and green: 3 wrinkled and yellow: 1 wrinkled and green.

From this, you can calculate the expected phenotypic frequencies for 100 peas:

Round and yellow 78 100 * (9/16) = 56.25
Round and green 6 100 * (3/16) = 18.75
Wrinkled and yellow 4 100 * (3/16) = 18.75
Wrinkled and green 12 100 * (1/16) = 6.21

Step 2: Calculate chi-square

Round and yellow 78 56.25 21.75 473.06 8.41
Round and green 6 18.75 −12.75 162.56 8.67
Wrinkled and yellow 4 18.75 −14.75 217.56 11.6
Wrinkled and green 12 6.21 5.79 33.52 5.4

Χ 2 = 8.41 + 8.67 + 11.6 + 5.4 = 34.08

Step 3: Find the critical chi-square value

Since there are four groups (round and yellow, round and green, wrinkled and yellow, wrinkled and green), there are three degrees of freedom .

For a test of significance at α = .05 and df = 3, the Χ 2 critical value is 7.82.

Step 4: Compare the chi-square value to the critical value

Χ 2 = 34.08

Critical value = 7.82

The Χ 2 value is greater than the critical value .

Step 5: Decide whether the reject the null hypothesis

The Χ 2 value is greater than the critical value, so we reject the null hypothesis that the population of offspring have an equal probability of inheriting all possible genotypic combinations. There is a significant difference between the observed and expected genotypic frequencies ( p < .05).

The data supports the alternative hypothesis that the offspring do not have an equal probability of inheriting all possible genotypic combinations, which suggests that the genes are linked

You can use the chisq.test() function to perform a chi-square goodness of fit test in R. Give the observed values in the “x” argument, give the expected values in the “p” argument, and set “rescale.p” to true. For example:

chisq.test(x = c(22,30,23), p = c(25,25,25), rescale.p = TRUE)

You can use the CHISQ.TEST() function to perform a chi-square goodness of fit test in Excel. It takes two arguments, CHISQ.TEST(observed_range, expected_range), and returns the p value .

Both correlations and chi-square tests can test for relationships between two variables. However, a correlation is used when you have two quantitative variables and a chi-square test of independence is used when you have two categorical variables.

Both chi-square tests and t tests can test for differences between two groups. However, a t test is used when you have a dependent quantitative variable and an independent categorical variable (with two groups). A chi-square test of independence is used when you have two categorical variables.

The two main chi-square tests are the chi-square goodness of fit test and the chi-square test of independence .

A chi-square distribution is a continuous probability distribution . The shape of a chi-square distribution depends on its degrees of freedom , k . The mean of a chi-square distribution is equal to its degrees of freedom ( k ) and the variance is 2 k . The range is 0 to ∞.

As the degrees of freedom ( k ) increases, the chi-square distribution goes from a downward curve to a hump shape. As the degrees of freedom increases further, the hump goes from being strongly right-skewed to being approximately normal.

To find the quartiles of a probability distribution, you can use the distribution’s quantile function.

You can use the quantile() function to find quartiles in R. If your data is called “data”, then “quantile(data, prob=c(.25,.5,.75), type=1)” will return the three quartiles.

You can use the QUARTILE() function to find quartiles in Excel. If your data is in column A, then click any blank cell and type “=QUARTILE(A:A,1)” for the first quartile, “=QUARTILE(A:A,2)” for the second quartile, and “=QUARTILE(A:A,3)” for the third quartile.

You can use the PEARSON() function to calculate the Pearson correlation coefficient in Excel. If your variables are in columns A and B, then click any blank cell and type “PEARSON(A:A,B:B)”.

There is no function to directly test the significance of the correlation.

You can use the cor() function to calculate the Pearson correlation coefficient in R. To test the significance of the correlation, you can use the cor.test() function.

You should use the Pearson correlation coefficient when (1) the relationship is linear and (2) both variables are quantitative and (3) normally distributed and (4) have no outliers.

The Pearson correlation coefficient ( r ) is the most common way of measuring a linear correlation. It is a number between –1 and 1 that measures the strength and direction of the relationship between two variables.

This table summarizes the most important differences between normal distributions and Poisson distributions :

Characteristic Normal Poisson
Continuous
Mean (µ) and standard deviation (σ) Lambda (λ)
Shape Bell-shaped Depends on λ
Symmetrical Asymmetrical (right-skewed). As λ increases, the asymmetry decreases.
Range −∞ to ∞ 0 to ∞

When the mean of a Poisson distribution is large (>10), it can be approximated by a normal distribution.

In the Poisson distribution formula, lambda (λ) is the mean number of events within a given interval of time or space. For example, λ = 0.748 floods per year.

The e in the Poisson distribution formula stands for the number 2.718. This number is called Euler’s constant. You can simply substitute e with 2.718 when you’re calculating a Poisson probability. Euler’s constant is a very useful number and is especially important in calculus.

The three types of skewness are:

  • Right skew (also called positive skew ) . A right-skewed distribution is longer on the right side of its peak than on its left.
  • Left skew (also called negative skew). A left-skewed distribution is longer on the left side of its peak than on its right.
  • Zero skew. It is symmetrical and its left and right sides are mirror images.

Skewness of a distribution

Skewness and kurtosis are both important measures of a distribution’s shape.

  • Skewness measures the asymmetry of a distribution.
  • Kurtosis measures the heaviness of a distribution’s tails relative to a normal distribution .

Difference between skewness and kurtosis

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The t distribution was first described by statistician William Sealy Gosset under the pseudonym “Student.”

To calculate a confidence interval of a mean using the critical value of t , follow these four steps:

  • Choose the significance level based on your desired confidence level. The most common confidence level is 95%, which corresponds to α = .05 in the two-tailed t table .
  • Find the critical value of t in the two-tailed t table.
  • Multiply the critical value of t by s / √ n .
  • Add this value to the mean to calculate the upper limit of the confidence interval, and subtract this value from the mean to calculate the lower limit.

To test a hypothesis using the critical value of t , follow these four steps:

  • Calculate the t value for your sample.
  • Find the critical value of t in the t table .
  • Determine if the (absolute) t value is greater than the critical value of t .
  • Reject the null hypothesis if the sample’s t value is greater than the critical value of t . Otherwise, don’t reject the null hypothesis .

You can use the T.INV() function to find the critical value of t for one-tailed tests in Excel, and you can use the T.INV.2T() function for two-tailed tests.

You can use the qt() function to find the critical value of t in R. The function gives the critical value of t for the one-tailed test. If you want the critical value of t for a two-tailed test, divide the significance level by two.

You can use the RSQ() function to calculate R² in Excel. If your dependent variable is in column A and your independent variable is in column B, then click any blank cell and type “RSQ(A:A,B:B)”.

You can use the summary() function to view the R²  of a linear model in R. You will see the “R-squared” near the bottom of the output.

There are two formulas you can use to calculate the coefficient of determination (R²) of a simple linear regression .

R^2=(r)^2

The coefficient of determination (R²) is a number between 0 and 1 that measures how well a statistical model predicts an outcome. You can interpret the R² as the proportion of variation in the dependent variable that is predicted by the statistical model.

There are three main types of missing data .

Missing completely at random (MCAR) data are randomly distributed across the variable and unrelated to other variables .

Missing at random (MAR) data are not randomly distributed but they are accounted for by other observed variables.

Missing not at random (MNAR) data systematically differ from the observed values.

To tidy up your missing data , your options usually include accepting, removing, or recreating the missing data.

  • Acceptance: You leave your data as is
  • Listwise or pairwise deletion: You delete all cases (participants) with missing data from analyses
  • Imputation: You use other data to fill in the missing data

Missing data are important because, depending on the type, they can sometimes bias your results. This means your results may not be generalizable outside of your study because your data come from an unrepresentative sample .

Missing data , or missing values, occur when you don’t have data stored for certain variables or participants.

In any dataset, there’s usually some missing data. In quantitative research , missing values appear as blank cells in your spreadsheet.

There are two steps to calculating the geometric mean :

  • Multiply all values together to get their product.
  • Find the n th root of the product ( n is the number of values).

Before calculating the geometric mean, note that:

  • The geometric mean can only be found for positive values.
  • If any value in the data set is zero, the geometric mean is zero.

The arithmetic mean is the most commonly used type of mean and is often referred to simply as “the mean.” While the arithmetic mean is based on adding and dividing values, the geometric mean multiplies and finds the root of values.

Even though the geometric mean is a less common measure of central tendency , it’s more accurate than the arithmetic mean for percentage change and positively skewed data. The geometric mean is often reported for financial indices and population growth rates.

The geometric mean is an average that multiplies all values and finds a root of the number. For a dataset with n numbers, you find the n th root of their product.

Outliers are extreme values that differ from most values in the dataset. You find outliers at the extreme ends of your dataset.

It’s best to remove outliers only when you have a sound reason for doing so.

Some outliers represent natural variations in the population , and they should be left as is in your dataset. These are called true outliers.

Other outliers are problematic and should be removed because they represent measurement errors , data entry or processing errors, or poor sampling.

You can choose from four main ways to detect outliers :

  • Sorting your values from low to high and checking minimum and maximum values
  • Visualizing your data with a box plot and looking for outliers
  • Using the interquartile range to create fences for your data
  • Using statistical procedures to identify extreme values

Outliers can have a big impact on your statistical analyses and skew the results of any hypothesis test if they are inaccurate.

These extreme values can impact your statistical power as well, making it hard to detect a true effect if there is one.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

There are various ways to improve power:

  • Increase the potential effect size by manipulating your independent variable more strongly,
  • Increase sample size,
  • Increase the significance level (alpha),
  • Reduce measurement error by increasing the precision and accuracy of your measurement devices and procedures,
  • Use a one-tailed test instead of a two-tailed test for t tests and z tests.

A power analysis is a calculation that helps you determine a minimum sample size for your study. It’s made up of four main components. If you know or have estimates for any three of these, you can calculate the fourth component.

  • Statistical power : the likelihood that a test will detect an effect of a certain size if there is one, usually set at 80% or higher.
  • Sample size : the minimum number of observations needed to observe an effect of a certain size with a given power level.
  • Significance level (alpha) : the maximum risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Expected effect size : a standardized way of expressing the magnitude of the expected result of your study, usually based on similar studies or a pilot study.

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

The risk of making a Type II error is inversely related to the statistical power of a test. Power is the extent to which a test can correctly detect a real effect when there is one.

To (indirectly) reduce the risk of a Type II error, you can increase the sample size or the significance level to increase statistical power.

The risk of making a Type I error is the significance level (or alpha) that you choose. That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results ( p value ).

The significance level is usually set at 0.05 or 5%. This means that your results only have a 5% chance of occurring, or less, if the null hypothesis is actually true.

To reduce the Type I error probability, you can set a lower significance level.

In statistics, a Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s actually false.

In statistics, power refers to the likelihood of a hypothesis test detecting a true effect if there is one. A statistically powerful test is more likely to reject a false negative (a Type II error).

If you don’t ensure enough power in your study, you may not be able to detect a statistically significant result even when it has practical significance. Your study might not have the ability to answer your research question.

While statistical significance shows that an effect exists in a study, practical significance shows that the effect is large enough to be meaningful in the real world.

Statistical significance is denoted by p -values whereas practical significance is represented by effect sizes .

There are dozens of measures of effect sizes . The most common effect sizes are Cohen’s d and Pearson’s r . Cohen’s d measures the size of the difference between two groups while Pearson’s r measures the strength of the relationship between two variables .

Effect size tells you how meaningful the relationship between variables or the difference between groups is.

A large effect size means that a research finding has practical significance, while a small effect size indicates limited practical applications.

Using descriptive and inferential statistics , you can make two types of estimates about the population : point estimates and interval estimates.

  • A point estimate is a single value estimate of a parameter . For instance, a sample mean is a point estimate of a population mean.
  • An interval estimate gives you a range of values where the parameter is expected to lie. A confidence interval is the most common type of interval estimate.

Both types of estimates are important for gathering a clear idea of where a parameter is likely to lie.

Standard error and standard deviation are both measures of variability . The standard deviation reflects variability within a sample, while the standard error estimates the variability across samples of a population.

The standard error of the mean , or simply standard error , indicates how different the population mean is likely to be from a sample mean. It tells you how much the sample mean would vary if you were to repeat a study using new samples from within a single population.

To figure out whether a given number is a parameter or a statistic , ask yourself the following:

  • Does the number describe a whole, complete population where every member can be reached for data collection ?
  • Is it possible to collect data for this number from every member of the population in a reasonable time frame?

If the answer is yes to both questions, the number is likely to be a parameter. For small populations, data can be collected from the whole population and summarized in parameters.

If the answer is no to either of the questions, then the number is more likely to be a statistic.

The arithmetic mean is the most commonly used mean. It’s often simply called the mean or the average. But there are some other types of means you can calculate depending on your research purposes:

  • Weighted mean: some values contribute more to the mean than others.
  • Geometric mean : values are multiplied rather than summed up.
  • Harmonic mean: reciprocals of values are used instead of the values themselves.

You can find the mean , or average, of a data set in two simple steps:

  • Find the sum of the values by adding them all up.
  • Divide the sum by the number of values in the data set.

This method is the same whether you are dealing with sample or population data or positive or negative numbers.

The median is the most informative measure of central tendency for skewed distributions or distributions with outliers. For example, the median is often used as a measure of central tendency for income distributions, which are generally highly skewed.

Because the median only uses one or two values, it’s unaffected by extreme outliers or non-symmetric distributions of scores. In contrast, the mean and mode can vary in skewed distributions.

To find the median , first order your data. Then calculate the middle position based on n , the number of values in your data set.

\dfrac{(n+1)}{2}

A data set can often have no mode, one mode or more than one mode – it all depends on how many different values repeat most frequently.

Your data can be:

  • without any mode
  • unimodal, with one mode,
  • bimodal, with two modes,
  • trimodal, with three modes, or
  • multimodal, with four or more modes.

To find the mode :

  • If your data is numerical or quantitative, order the values from low to high.
  • If it is categorical, sort the values by group, in any order.

Then you simply need to identify the most frequently occurring value.

The interquartile range is the best measure of variability for skewed distributions or data sets with outliers. Because it’s based on values that come from the middle half of the distribution, it’s unlikely to be influenced by outliers .

The two most common methods for calculating interquartile range are the exclusive and inclusive methods.

The exclusive method excludes the median when identifying Q1 and Q3, while the inclusive method includes the median as a value in the data set in identifying the quartiles.

For each of these methods, you’ll need different procedures for finding the median, Q1 and Q3 depending on whether your sample size is even- or odd-numbered. The exclusive method works best for even-numbered sample sizes, while the inclusive method is often used with odd-numbered sample sizes.

While the range gives you the spread of the whole data set, the interquartile range gives you the spread of the middle half of a data set.

Homoscedasticity, or homogeneity of variances, is an assumption of equal or similar variances in different groups being compared.

This is an important assumption of parametric statistical tests because they are sensitive to any dissimilarities. Uneven variances in samples result in biased and skewed test results.

Statistical tests such as variance tests or the analysis of variance (ANOVA) use sample variance to assess group differences of populations. They use the variances of the samples to assess whether the populations they come from significantly differ from each other.

Variance is the average squared deviations from the mean, while standard deviation is the square root of this number. Both measures reflect variability in a distribution, but their units differ:

  • Standard deviation is expressed in the same units as the original values (e.g., minutes or meters).
  • Variance is expressed in much larger units (e.g., meters squared).

Although the units of variance are harder to intuitively understand, variance is important in statistical tests .

The empirical rule, or the 68-95-99.7 rule, tells you where most of the values lie in a normal distribution :

  • Around 68% of values are within 1 standard deviation of the mean.
  • Around 95% of values are within 2 standard deviations of the mean.
  • Around 99.7% of values are within 3 standard deviations of the mean.

The empirical rule is a quick way to get an overview of your data and check for any outliers or extreme values that don’t follow this pattern.

In a normal distribution , data are symmetrically distributed with no skew. Most values cluster around a central region, with values tapering off as they go further away from the center.

The measures of central tendency (mean, mode, and median) are exactly the same in a normal distribution.

Normal distribution

The standard deviation is the average amount of variability in your data set. It tells you, on average, how far each score lies from the mean .

In normal distributions, a high standard deviation means that values are generally far from the mean, while a low standard deviation indicates that values are clustered close to the mean.

No. Because the range formula subtracts the lowest number from the highest number, the range is always zero or a positive number.

In statistics, the range is the spread of your data from the lowest to the highest value in the distribution. It is the simplest measure of variability .

While central tendency tells you where most of your data points lie, variability summarizes how far apart your points from each other.

Data sets can have the same central tendency but different levels of variability or vice versa . Together, they give you a complete picture of your data.

Variability is most commonly measured with the following descriptive statistics :

  • Range : the difference between the highest and lowest values
  • Interquartile range : the range of the middle half of a distribution
  • Standard deviation : average distance from the mean
  • Variance : average of squared distances from the mean

Variability tells you how far apart points lie from each other and from the center of a distribution or a data set.

Variability is also referred to as spread, scatter or dispersion.

While interval and ratio data can both be categorized, ranked, and have equal spacing between adjacent values, only ratio scales have a true zero.

For example, temperature in Celsius or Fahrenheit is at an interval scale because zero is not the lowest possible temperature. In the Kelvin scale, a ratio scale, zero represents a total lack of thermal energy.

A critical value is the value of the test statistic which defines the upper and lower bounds of a confidence interval , or which defines the threshold of statistical significance in a statistical test. It describes how far from the mean of the distribution you have to go to cover a certain amount of the total variation in the data (i.e. 90%, 95%, 99%).

If you are constructing a 95% confidence interval and are using a threshold of statistical significance of p = 0.05, then your critical value will be identical in both cases.

The t -distribution gives more probability to observations in the tails of the distribution than the standard normal distribution (a.k.a. the z -distribution).

In this way, the t -distribution is more conservative than the standard normal distribution: to reach the same level of confidence or statistical significance , you will need to include a wider range of the data.

A t -score (a.k.a. a t -value) is equivalent to the number of standard deviations away from the mean of the t -distribution .

The t -score is the test statistic used in t -tests and regression tests. It can also be used to describe how far from the mean an observation is when the data follow a t -distribution.

The t -distribution is a way of describing a set of observations where most observations fall close to the mean , and the rest of the observations make up the tails on either side. It is a type of normal distribution used for smaller sample sizes, where the variance in the data is unknown.

The t -distribution forms a bell curve when plotted on a graph. It can be described mathematically using the mean and the standard deviation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

Ordinal data has two characteristics:

  • The data can be classified into different categories within a variable.
  • The categories have a natural ranked order.

However, unlike with interval data, the distances between the categories are uneven or unknown.

Nominal and ordinal are two of the four levels of measurement . Nominal level data can only be classified, while ordinal level data can be classified and ordered.

Nominal data is data that can be labelled or classified into mutually exclusive categories within a variable. These categories cannot be ordered in a meaningful way.

For example, for the nominal variable of preferred mode of transportation, you may have the categories of car, bus, train, tram or bicycle.

If your confidence interval for a difference between groups includes zero, that means that if you run your experiment again you have a good chance of finding no difference between groups.

If your confidence interval for a correlation or regression includes zero, that means that if you run your experiment again there is a good chance of finding no correlation in your data.

In both of these cases, you will also find a high p -value when you run your statistical test, meaning that your results could have occurred under the null hypothesis of no relationship between variables or no difference between groups.

If you want to calculate a confidence interval around the mean of data that is not normally distributed , you have two choices:

  • Find a distribution that matches the shape of your data and use that distribution to calculate the confidence interval.
  • Perform a transformation on your data to make it fit a normal distribution, and then find the confidence interval for the transformed data.

The standard normal distribution , also called the z -distribution, is a special normal distribution where the mean is 0 and the standard deviation is 1.

Any normal distribution can be converted into the standard normal distribution by turning the individual values into z -scores. In a z -distribution, z -scores tell you how many standard deviations away from the mean each value lies.

The z -score and t -score (aka z -value and t -value) show how many standard deviations away from the mean of the distribution you are, assuming your data follow a z -distribution or a t -distribution .

These scores are used in statistical tests to show how far from the mean of the predicted distribution your statistical estimate is. If your test produces a z -score of 2.5, this means that your estimate is 2.5 standard deviations from the predicted mean.

The predicted mean and distribution of your estimate are generated by the null hypothesis of the statistical test you are using. The more standard deviations away from the predicted mean your estimate is, the less likely it is that the estimate could have occurred under the null hypothesis .

To calculate the confidence interval , you need to know:

  • The point estimate you are constructing the confidence interval for
  • The critical values for the test statistic
  • The standard deviation of the sample
  • The sample size

Then you can plug these components into the confidence interval formula that corresponds to your data. The formula depends on the type of estimate (e.g. a mean or a proportion) and on the distribution of your data.

The confidence level is the percentage of times you expect to get close to the same estimate if you run your experiment again or resample the population in the same way.

The confidence interval consists of the upper and lower bounds of the estimate you expect to find at a given level of confidence.

For example, if you are estimating a 95% confidence interval around the mean proportion of female babies born every year based on a random sample of babies, you might find an upper bound of 0.56 and a lower bound of 0.48. These are the upper and lower bounds of the confidence interval. The confidence level is 95%.

The mean is the most frequently used measure of central tendency because it uses all values in the data set to give you an average.

For data from skewed distributions, the median is better than the mean because it isn’t influenced by extremely large values.

The mode is the only measure you can use for nominal or categorical data that can’t be ordered.

The measures of central tendency you can use depends on the level of measurement of your data.

  • For a nominal level, you can only use the mode to find the most frequent value.
  • For an ordinal level or ranked data, you can also use the median to find the value in the middle of your data set.
  • For interval or ratio levels, in addition to the mode and median, you can use the mean to find the average value.

Measures of central tendency help you find the middle, or the average, of a data set.

The 3 most common measures of central tendency are the mean, median and mode.

  • The mode is the most frequent value.
  • The median is the middle number in an ordered data set.
  • The mean is the sum of all values divided by the total number of values.

Some variables have fixed levels. For example, gender and ethnicity are always nominal level data because they cannot be ranked.

However, for other variables, you can choose the level of measurement . For example, income is a variable that can be recorded on an ordinal or a ratio scale:

  • At an ordinal level , you could create 5 income groupings and code the incomes that fall within them from 1–5.
  • At a ratio level , you would record exact numbers for income.

If you have a choice, the ratio level is always preferable because you can analyze data in more ways. The higher the level of measurement, the more precise your data is.

The level at which you measure a variable determines how you can analyze your data.

Depending on the level of measurement , you can perform different descriptive statistics to get an overall summary of your data and inferential statistics to see if your results support or refute your hypothesis .

Levels of measurement tell you how precisely variables are recorded. There are 4 levels of measurement, which can be ranked from low to high:

  • Nominal : the data can only be categorized.
  • Ordinal : the data can be categorized and ranked.
  • Interval : the data can be categorized and ranked, and evenly spaced.
  • Ratio : the data can be categorized, ranked, evenly spaced and has a natural zero.

No. The p -value only tells you how likely the data you have observed is to have occurred under the null hypothesis .

If the p -value is below your threshold of significance (typically p < 0.05), then you can reject the null hypothesis, but this does not necessarily mean that your alternative hypothesis is true.

The alpha value, or the threshold for statistical significance , is arbitrary – which value you use depends on your field of study.

In most cases, researchers use an alpha of 0.05, which means that there is a less than 5% chance that the data being tested could have occurred under the null hypothesis.

P -values are usually automatically calculated by the program you use to perform your statistical test. They can also be estimated using p -value tables for the relevant test statistic .

P -values are calculated from the null distribution of the test statistic. They tell you how often a test statistic is expected to occur under the null hypothesis of the statistical test, based on where it falls in the null distribution.

If the test statistic is far from the mean of the null distribution, then the p -value will be small, showing that the test statistic is not likely to have occurred under the null hypothesis.

A p -value , or probability value, is a number describing how likely it is that your data would have occurred under the null hypothesis of your statistical test .

The test statistic you use will be determined by the statistical test.

You can choose the right statistical test by looking at what type of data you have collected and what type of relationship you want to test.

The test statistic will change based on the number of observations in your data, how variable your observations are, and how strong the underlying patterns in the data are.

For example, if one data set has higher variability while another has lower variability, the first data set will produce a test statistic closer to the null hypothesis , even if the true correlation between two variables is the same in either data set.

The formula for the test statistic depends on the statistical test being used.

Generally, the test statistic is calculated as the pattern in your data (i.e. the correlation between variables or difference between groups) divided by the variance in the data (i.e. the standard deviation ).

  • Univariate statistics summarize only one variable  at a time.
  • Bivariate statistics compare two variables .
  • Multivariate statistics compare more than two variables .

The 3 main types of descriptive statistics concern the frequency distribution, central tendency, and variability of a dataset.

  • Distribution refers to the frequencies of different responses.
  • Measures of central tendency give you the average for each response.
  • Measures of variability show you the spread or dispersion of your dataset.

Descriptive statistics summarize the characteristics of a data set. Inferential statistics allow you to test a hypothesis or assess whether your data is generalizable to the broader population.

In statistics, model selection is a process researchers use to compare the relative value of different statistical models and determine which one is the best fit for the observed data.

The Akaike information criterion is one of the most common methods of model selection. AIC weights the ability of the model to predict the observed data against the number of parameters the model requires to reach that level of precision.

AIC model selection can help researchers find a model that explains the observed variation in their data while avoiding overfitting.

In statistics, a model is the collection of one or more independent variables and their predicted interactions that researchers use to try to explain variation in their dependent variable.

You can test a model using a statistical test . To compare how well different models fit your data, you can use Akaike’s information criterion for model selection.

The Akaike information criterion is calculated from the maximum log-likelihood of the model and the number of parameters (K) used to reach that likelihood. The AIC function is 2K – 2(log-likelihood) .

Lower AIC values indicate a better-fit model, and a model with a delta-AIC (the difference between the two AIC values being compared) of more than -2 is considered significantly better than the model it is being compared to.

The Akaike information criterion is a mathematical test used to evaluate how well a model fits the data it is meant to describe. It penalizes models which use more independent variables (parameters) as a way to avoid over-fitting.

AIC is most often used to compare the relative goodness-of-fit among different models under consideration and to then choose the model that best fits the data.

A factorial ANOVA is any ANOVA that uses more than one categorical independent variable . A two-way ANOVA is a type of factorial ANOVA.

Some examples of factorial ANOVAs include:

  • Testing the combined effects of vaccination (vaccinated or not vaccinated) and health status (healthy or pre-existing condition) on the rate of flu infection in a population.
  • Testing the effects of marital status (married, single, divorced, widowed), job status (employed, self-employed, unemployed, retired), and family history (no family history, some family history) on the incidence of depression in a population.
  • Testing the effects of feed type (type A, B, or C) and barn crowding (not crowded, somewhat crowded, very crowded) on the final weight of chickens in a commercial farming operation.

In ANOVA, the null hypothesis is that there is no difference among group means. If any group differs significantly from the overall group mean, then the ANOVA will report a statistically significant result.

Significant differences among group means are calculated using the F statistic, which is the ratio of the mean sum of squares (the variance explained by the independent variable) to the mean square error (the variance left over).

If the F statistic is higher than the critical value (the value of F that corresponds with your alpha value, usually 0.05), then the difference among groups is deemed statistically significant.

The only difference between one-way and two-way ANOVA is the number of independent variables . A one-way ANOVA has one independent variable, while a two-way ANOVA has two.

  • One-way ANOVA : Testing the relationship between shoe brand (Nike, Adidas, Saucony, Hoka) and race finish times in a marathon.
  • Two-way ANOVA : Testing the relationship between shoe brand (Nike, Adidas, Saucony, Hoka), runner age group (junior, senior, master’s), and race finishing times in a marathon.

All ANOVAs are designed to test for differences among three or more groups. If you are only testing for a difference between two groups, use a t-test instead.

Multiple linear regression is a regression model that estimates the relationship between a quantitative dependent variable and two or more independent variables using a straight line.

Linear regression most often uses mean-square error (MSE) to calculate the error of the model. MSE is calculated by:

  • measuring the distance of the observed y-values from the predicted y-values at each value of x;
  • squaring each of these distances;
  • calculating the mean of each of the squared distances.

Linear regression fits a line to the data by finding the regression coefficient that results in the smallest MSE.

Simple linear regression is a regression model that estimates the relationship between one independent variable and one dependent variable using a straight line. Both variables should be quantitative.

For example, the relationship between temperature and the expansion of mercury in a thermometer can be modeled using a straight line: as temperature increases, the mercury expands. This linear relationship is so certain that we can use mercury thermometers to measure temperature.

A regression model is a statistical model that estimates the relationship between one dependent variable and one or more independent variables using a line (or a plane in the case of two or more independent variables).

A regression model can be used when the dependent variable is quantitative, except in the case of logistic regression, where the dependent variable is binary.

A t-test should not be used to measure differences among more than two groups, because the error structure for a t-test will underestimate the actual error when many groups are being compared.

If you want to compare the means of several groups at once, it’s best to use another statistical test such as ANOVA or a post-hoc test.

A one-sample t-test is used to compare a single population to a standard value (for example, to determine whether the average lifespan of a specific town is different from the country average).

A paired t-test is used to compare a single population before and after some experimental intervention or at two different points in time (for example, measuring student performance on a test before and after being taught the material).

A t-test measures the difference in group means divided by the pooled standard error of the two group means.

In this way, it calculates a number (the t-value) illustrating the magnitude of the difference between the two group means being compared, and estimates the likelihood that this difference exists purely by chance (p-value).

Your choice of t-test depends on whether you are studying one group or two groups, and whether you care about the direction of the difference in group means.

If you are studying one group, use a paired t-test to compare the group mean over time or after an intervention, or use a one-sample t-test to compare the group mean to a standard value. If you are studying two groups, use a two-sample t-test .

If you want to know only whether a difference exists, use a two-tailed test . If you want to know if one group mean is greater or less than the other, use a left-tailed or right-tailed one-tailed test .

A t-test is a statistical test that compares the means of two samples . It is used in hypothesis testing , with a null hypothesis that the difference in group means is zero and an alternate hypothesis that the difference in group means is different from zero.

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

A test statistic is a number calculated by a  statistical test . It describes how far your observed data is from the  null hypothesis  of no relationship between  variables or no difference among sample groups.

The test statistic tells you how different two or more groups are from the overall population mean , or how different a linear slope is from the slope predicted by a null hypothesis . Different test statistics are used in different statistical tests.

Statistical tests commonly assume that:

  • the data are normally distributed
  • the groups that are being compared have similar variance
  • the data are independent

If your data does not meet these assumptions you might still be able to use a nonparametric statistical test , which have fewer requirements but also make weaker inferences.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    statistical hypothesis research

  2. Statistical Hypothesis Testing: Step by Step

    statistical hypothesis research

  3. PPT

    statistical hypothesis research

  4. PPT

    statistical hypothesis research

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    statistical hypothesis research

  6. Statistical Hypotheses

    statistical hypothesis research

VIDEO

  1. Concept of Hypothesis

  2. Hypothesis

  3. The Similarity Between Statistical Hypothesis Testing and the Judiciary System

  4. What is Hypothesis

  5. Hypothsis Testing in Statistics Part 2 Steps to Solving a Problem

  6. Statistics for Hypothesis Testing

COMMENTS

  1. Hypothesis Testing

    Step 5: Present your findings. The results of hypothesis testing will be presented in the results and discussion sections of your research paper, dissertation or thesis.. In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p-value).

  2. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  3. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  4. Null & Alternative Hypotheses

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ("x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  5. Statistical Hypothesis

    Hypothesis testing involves two statistical hypotheses. The first is the null hypothesis (H 0) as described above.For each H 0, there is an alternative hypothesis (H a) that will be favored if the null hypothesis is found to be statistically not viable.The H a can be either nondirectional or directional, as dictated by the research hypothesis. For example, if a researcher only believes the new ...

  6. Statistical Hypothesis Testing Overview

    Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.

  7. Hypothesis Testing: Uses, Steps & Example

    Formulate the Hypotheses: Write your research hypotheses as a null hypothesis (H 0) and an alternative hypothesis (H A).; Data Collection: Gather data specifically aimed at testing the hypothesis.; Conduct A Test: Use a suitable statistical test to analyze your data.; Make a Decision: Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.

  8. Understanding Statistical Testing

    Abstract. Statistical hypothesis testing is common in research, but a conventional understanding sometimes leads to mistaken application and misinterpretation. The logic of hypothesis testing presented in this article provides for a clearer understanding, application, and interpretation. Key conclusions are that (a) the magnitude of an estimate ...

  9. Statistical hypothesis test

    A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a ... Successfully rejecting the null hypothesis may offer no support for the research hypothesis. The continuing controversy concerns the selection of the best statistical practices for the near-term future given the ...

  10. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  11. 9.1: Introduction to Hypothesis Testing

    In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis. The null hypothesis is usually denoted H0 while the alternative hypothesis is usually denoted H1. An hypothesis test is a statistical decision; the conclusion will either be ...

  12. Hypothesis Testing, P Values, Confidence Intervals, and Significance

    Medical providers often rely on evidence-based medicine to guide decision-making in practice. Often a research hypothesis is tested with results provided, typically with p values, confidence intervals, or both. Additionally, statistical or research significance is estimated or determined by the investigators. Unfortunately, healthcare providers may have different comfort levels in interpreting ...

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  14. Hypothesis Tests

    A falsifiable hypothesis is a statement, or hypothesis, that can be contradicted with evidence. In empirical (data-driven) research, this evidence will always be obtained through the data. In statistical hypothesis testing, the hypothesis that we formally test is called the null hypothesis.

  15. Introduction to Hypothesis Testing

    A statistical hypothesis is an assumption about a population parameter.. For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical ...

  16. The Beginner's Guide to Statistical Analysis

    A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data. While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research ...

  17. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods. ... Statistical hypothesis. The point of a statistical hypothesis is to test an already existing hypothesis by ...

  18. (PDF) Understanding Statistical Hypothesis Testing: The Logic of

    Abstract and Figures. Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex ...

  19. A Gentle Introduction to Statistical Hypothesis Testing

    A statistical hypothesis test may return a value called p or the p-value. This is a quantity that we can use to interpret or quantify the result of the test and either reject or fail to reject the null hypothesis. This is done by comparing the p-value to a threshold value chosen beforehand called the significance level.

  20. Choosing the Right Statistical Test

    What does a statistical test do? Statistical tests work by calculating a test statistic - a number that describes how much the relationship between variables in your test differs from the null hypothesis of no relationship.. It then calculates a p value (probability value). The p-value estimates how likely it is that you would see the difference described by the test statistic if the null ...

  21. Hypothesis Testing in Statistics

    It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question. Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.

  22. An Introduction to Statistics: Choosing the Correct Statistical Test

    In a previous article in this series, we looked at different types of data and ways to summarise them. 1 At the end of the research study, statistical analyses are performed to test the hypothesis and either prove or disprove it. The choice of statistical test needs to be carefully performed since the use of incorrect tests could lead to misleading conclusions.

  23. 8.2: The controversy over proper hypothesis testing

    NHST is by far the most commonly used approached in biosciences (e.g., out of 49 research articles I checked from four randomly selected issues of 2015 PLoS Biology, 43 used NHST, 2 used a likelihood approach, none used Bayesian statistics). The NHST is also the overwhelming manner in which we teach introductory statistics courses (e.g ...

  24. What's the difference between research and statistical ...

    The research hypothesis usually includes an explanation (" x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study, the statistical hypotheses correspond ...