• Skip to main content
  • Accessibility help

Information

We use cookies to collect anonymous data to help us improve your site browsing experience.

Click 'Accept all cookies' to agree to all cookies that collect anonymous data. To only allow the cookies that make the site work, click 'Use essential cookies only.' Visit 'Set cookie preferences' to control specific cookies.

Your cookie preferences have been saved. You can change your cookie settings at any time.

Coronavirus (COVID-19) and society: what matters to people in Scotland?

Findings from an open free text survey taken to understand in greater detail how the pandemic has changed Scotland.

  • This research has captured the diversity and complexity of people’s experiences.
  • People’s experiences of the pandemic and their ability to stay safe has been impacted by a range of factors, including: their geographical environment, their financial situation, profession, their living situation and if they have any physical or mental health conditions.
  • Even though the direct level of threat from COVID-19 has reduced (for some people), there is still concern about the longer term harm and disruption that COVID-19 has caused to people and communities, and worry about the threat of future waves of infection.
  • This report captures a number of specific suggestions for support. For example, support for key workers, creating safer public environments, wide-scale financial support, greater awareness around the experiences of those who are at higher risk to COVID-19 and putting in place robust processes for learning and reflection on the impact of the pandemic.
  • Public engagement in this open and unfiltered format is an essential part of making sense of people’s attitudes and behaviours within the context of their life.

Email: [email protected]

There is a problem

Thanks for your feedback

Your feedback helps us to improve this website. Do not give any personal information because we cannot reply to you directly.

Read these 12 moving essays about life during coronavirus

Artists, novelists, critics, and essayists are writing the first draft of history.

by Alissa Wilkinson

A woman wearing a face mask in Miami.

The world is grappling with an invisible, deadly enemy, trying to understand how to live with the threat posed by a virus . For some writers, the only way forward is to put pen to paper, trying to conceptualize and document what it feels like to continue living as countries are under lockdown and regular life seems to have ground to a halt.

So as the coronavirus pandemic has stretched around the world, it’s sparked a crop of diary entries and essays that describe how life has changed. Novelists, critics, artists, and journalists have put words to the feelings many are experiencing. The result is a first draft of how we’ll someday remember this time, filled with uncertainty and pain and fear as well as small moments of hope and humanity.

  • The Vox guide to navigating the coronavirus crisis

At the New York Review of Books, Ali Bhutto writes that in Karachi, Pakistan, the government-imposed curfew due to the virus is “eerily reminiscent of past military clampdowns”:

Beneath the quiet calm lies a sense that society has been unhinged and that the usual rules no longer apply. Small groups of pedestrians look on from the shadows, like an audience watching a spectacle slowly unfolding. People pause on street corners and in the shade of trees, under the watchful gaze of the paramilitary forces and the police.

His essay concludes with the sobering note that “in the minds of many, Covid-19 is just another life-threatening hazard in a city that stumbles from one crisis to another.”

Writing from Chattanooga, novelist Jamie Quatro documents the mixed ways her neighbors have been responding to the threat, and the frustration of conflicting direction, or no direction at all, from local, state, and federal leaders:

Whiplash, trying to keep up with who’s ordering what. We’re already experiencing enough chaos without this back-and-forth. Why didn’t the federal government issue a nationwide shelter-in-place at the get-go, the way other countries did? What happens when one state’s shelter-in-place ends, while others continue? Do states still under quarantine close their borders? We are still one nation, not fifty individual countries. Right?
  • A syllabus for the end of the world

Award-winning photojournalist Alessio Mamo, quarantined with his partner Marta in Sicily after she tested positive for the virus, accompanies his photographs in the Guardian of their confinement with a reflection on being confined :

The doctors asked me to take a second test, but again I tested negative. Perhaps I’m immune? The days dragged on in my apartment, in black and white, like my photos. Sometimes we tried to smile, imagining that I was asymptomatic, because I was the virus. Our smiles seemed to bring good news. My mother left hospital, but I won’t be able to see her for weeks. Marta started breathing well again, and so did I. I would have liked to photograph my country in the midst of this emergency, the battles that the doctors wage on the frontline, the hospitals pushed to their limits, Italy on its knees fighting an invisible enemy. That enemy, a day in March, knocked on my door instead.

In the New York Times Magazine, deputy editor Jessica Lustig writes with devastating clarity about her family’s life in Brooklyn while her husband battled the virus, weeks before most people began taking the threat seriously:

At the door of the clinic, we stand looking out at two older women chatting outside the doorway, oblivious. Do I wave them away? Call out that they should get far away, go home, wash their hands, stay inside? Instead we just stand there, awkwardly, until they move on. Only then do we step outside to begin the long three-block walk home. I point out the early magnolia, the forsythia. T says he is cold. The untrimmed hairs on his neck, under his beard, are white. The few people walking past us on the sidewalk don’t know that we are visitors from the future. A vision, a premonition, a walking visitation. This will be them: Either T, in the mask, or — if they’re lucky — me, tending to him.

Essayist Leslie Jamison writes in the New York Review of Books about being shut away alone in her New York City apartment with her 2-year-old daughter since she became sick:

The virus. Its sinewy, intimate name. What does it feel like in my body today? Shivering under blankets. A hot itch behind the eyes. Three sweatshirts in the middle of the day. My daughter trying to pull another blanket over my body with her tiny arms. An ache in the muscles that somehow makes it hard to lie still. This loss of taste has become a kind of sensory quarantine. It’s as if the quarantine keeps inching closer and closer to my insides. First I lost the touch of other bodies; then I lost the air; now I’ve lost the taste of bananas. Nothing about any of these losses is particularly unique. I’ve made a schedule so I won’t go insane with the toddler. Five days ago, I wrote Walk/Adventure! on it, next to a cut-out illustration of a tiger—as if we’d see tigers on our walks. It was good to keep possibility alive.

At Literary Hub, novelist Heidi Pitlor writes about the elastic nature of time during her family’s quarantine in Massachusetts:

During a shutdown, the things that mark our days—commuting to work, sending our kids to school, having a drink with friends—vanish and time takes on a flat, seamless quality. Without some self-imposed structure, it’s easy to feel a little untethered. A friend recently posted on Facebook: “For those who have lost track, today is Blursday the fortyteenth of Maprilay.” ... Giving shape to time is especially important now, when the future is so shapeless. We do not know whether the virus will continue to rage for weeks or months or, lord help us, on and off for years. We do not know when we will feel safe again. And so many of us, minus those who are gifted at compartmentalization or denial, remain largely captive to fear. We may stay this way if we do not create at least the illusion of movement in our lives, our long days spent with ourselves or partners or families.
  • What day is it today?

Novelist Lauren Groff writes at the New York Review of Books about trying to escape the prison of her fears while sequestered at home in Gainesville, Florida:

Some people have imaginations sparked only by what they can see; I blame this blinkered empiricism for the parks overwhelmed with people, the bars, until a few nights ago, thickly thronged. My imagination is the opposite. I fear everything invisible to me. From the enclosure of my house, I am afraid of the suffering that isn’t present before me, the people running out of money and food or drowning in the fluid in their lungs, the deaths of health-care workers now growing ill while performing their duties. I fear the federal government, which the right wing has so—intentionally—weakened that not only is it insufficient to help its people, it is actively standing in help’s way. I fear we won’t sufficiently punish the right. I fear leaving the house and spreading the disease. I fear what this time of fear is doing to my children, their imaginations, and their souls.

At ArtForum , Berlin-based critic and writer Kristian Vistrup Madsen reflects on martinis, melancholia, and Finnish artist Jaakko Pallasvuo’s 2018 graphic novel Retreat , in which three young people exile themselves in the woods:

In melancholia, the shape of what is ending, and its temporality, is sprawling and incomprehensible. The ambivalence makes it hard to bear. The world of Retreat is rendered in lush pink and purple watercolors, which dissolve into wild and messy abstractions. In apocalypse, the divisions established in genesis bleed back out. My own Corona-retreat is similarly soft, color-field like, each day a blurred succession of quarantinis, YouTube–yoga, and televized press conferences. As restrictions mount, so does abstraction. For now, I’m still rooting for love to save the world.

At the Paris Review , Matt Levin writes about reading Virginia Woolf’s novel The Waves during quarantine:

A retreat, a quarantine, a sickness—they simultaneously distort and clarify, curtail and expand. It is an ideal state in which to read literature with a reputation for difficulty and inaccessibility, those hermetic books shorn of the handholds of conventional plot or characterization or description. A novel like Virginia Woolf’s The Waves is perfect for the state of interiority induced by quarantine—a story of three men and three women, meeting after the death of a mutual friend, told entirely in the overlapping internal monologues of the six, interspersed only with sections of pure, achingly beautiful descriptions of the natural world, a day’s procession and recession of light and waves. The novel is, in my mind’s eye, a perfectly spherical object. It is translucent and shimmering and infinitely fragile, prone to shatter at the slightest disturbance. It is not a book that can be read in snatches on the subway—it demands total absorption. Though it revels in a stark emotional nakedness, the book remains aloof, remote in its own deep self-absorption.
  • Vox is starting a book club. Come read with us!

In an essay for the Financial Times, novelist Arundhati Roy writes with anger about Indian Prime Minister Narendra Modi’s anemic response to the threat, but also offers a glimmer of hope for the future:

Historically, pandemics have forced humans to break with the past and imagine their world anew. This one is no different. It is a portal, a gateway between one world and the next. We can choose to walk through it, dragging the carcasses of our prejudice and hatred, our avarice, our data banks and dead ideas, our dead rivers and smoky skies behind us. Or we can walk through lightly, with little luggage, ready to imagine another world. And ready to fight for it.

From Boston, Nora Caplan-Bricker writes in The Point about the strange contraction of space under quarantine, in which a friend in Beirut is as close as the one around the corner in the same city:

It’s a nice illusion—nice to feel like we’re in it together, even if my real world has shrunk to one person, my husband, who sits with his laptop in the other room. It’s nice in the same way as reading those essays that reframe social distancing as solidarity. “We must begin to see the negative space as clearly as the positive, to know what we don’t do is also brilliant and full of love,” the poet Anne Boyer wrote on March 10th, the day that Massachusetts declared a state of emergency. If you squint, you could almost make sense of this quarantine as an effort to flatten, along with the curve, the distinctions we make between our bonds with others. Right now, I care for my neighbor in the same way I demonstrate love for my mother: in all instances, I stay away. And in moments this month, I have loved strangers with an intensity that is new to me. On March 14th, the Saturday night after the end of life as we knew it, I went out with my dog and found the street silent: no lines for restaurants, no children on bicycles, no couples strolling with little cups of ice cream. It had taken the combined will of thousands of people to deliver such a sudden and complete emptiness. I felt so grateful, and so bereft.

And on his own website, musician and artist David Byrne writes about rediscovering the value of working for collective good , saying that “what is happening now is an opportunity to learn how to change our behavior”:

In emergencies, citizens can suddenly cooperate and collaborate. Change can happen. We’re going to need to work together as the effects of climate change ramp up. In order for capitalism to survive in any form, we will have to be a little more socialist. Here is an opportunity for us to see things differently — to see that we really are all connected — and adjust our behavior accordingly. Are we willing to do this? Is this moment an opportunity to see how truly interdependent we all are? To live in a world that is different and better than the one we live in now? We might be too far down the road to test every asymptomatic person, but a change in our mindsets, in how we view our neighbors, could lay the groundwork for the collective action we’ll need to deal with other global crises. The time to see how connected we all are is now.

The portrait these writers paint of a world under quarantine is multifaceted. Our worlds have contracted to the confines of our homes, and yet in some ways we’re more connected than ever to one another. We feel fear and boredom, anger and gratitude, frustration and strange peace. Uncertainty drives us to find metaphors and images that will let us wrap our minds around what is happening.

Yet there’s no single “what” that is happening. Everyone is contending with the pandemic and its effects from different places and in different ways. Reading others’ experiences — even the most frightening ones — can help alleviate the loneliness and dread, a little, and remind us that what we’re going through is both unique and shared by all.

  • Recommendations

Most Popular

  • Kamala Harris’s speech triggered a vintage Trump meltdown
  • The difference between American and UK Love Is Blind
  • A Trump judge ruled there’s a Second Amendment right to own machine guns
  • The massive Social Security number breach is actually a good thing
  • This chart of ocean heat is terrifying

Today, Explained

Understand the world with a daily explainer plus the most compelling stories of the day.

 alt=

This is the title for the native ad

 alt=

More in Culture

Theo Von’s interview with Donald Trump makes more sense than you think

Cocaine, UFC, politics, and the former president’s podcast bro tour, explained.

Why did anyone think Beyonce was going to play the DNC?

Kamala Harris was the main event, but fans, the internet, and the media fell for rumors of a Beyoncé concert.

Pumpkin spice lattes — and the backlash, and the backlash to the backlash — explained

Pumpkin spice is America’s most hatable seasonal flavor. But Starbucks is leaning in even more heavily this year.

Chappell Roan spent 7 years becoming an overnight success

The rising Midwest princess is finally embracing queer joy — and learning that fame comes with a price.

20 years of Bennifer ends in divorce

Looking back at this 20-year on-again, off-again, on-again, and now off-again Hollywood love story.

The It Ends With Us drama is the new Don’t Worry Darling drama

Is there actually beef between Blake Lively and Justin Baldoni?

  • Open access
  • Published: 04 February 2022

Analysis of the COVID-19 pandemic: lessons towards a more effective response to public health emergencies

  • Yibeltal Assefa   ORCID: orcid.org/0000-0003-2393-1492 1 ,
  • Charles F. Gilks 1 ,
  • Simon Reid 1 ,
  • Remco van de Pas 2 ,
  • Dereje Gedle Gete 1 &
  • Wim Van Damme 2  

Globalization and Health volume  18 , Article number:  10 ( 2022 ) Cite this article

41k Accesses

39 Citations

10 Altmetric

Metrics details

The pandemic of Coronavirus Disease 2019 (COVID-19) is a timely reminder of the nature and impact of Public Health Emergencies of International Concern. As of 12 January 2022, there were over 314 million cases and over 5.5 million deaths notified since the start of the pandemic. The COVID-19 pandemic takes variable shapes and forms, in terms of cases and deaths, in different regions and countries of the world. The objective of this study is to analyse the variable expression of COVID-19 pandemic so that lessons can be learned towards an effective public health emergency response.

We conducted a mixed-methods study to understand the heterogeneity of cases and deaths due to the COVID-19 pandemic. Correlation analysis and scatter plot were employed for the quantitative data. We used Spearman’s correlation analysis to determine relationship strength between cases and deaths and socio-economic and health systems. We organized qualitative information from the literature and conducted a thematic analysis to recognize patterns of cases and deaths and explain the findings from the quantitative data.

We have found that regions and countries with high human development index have higher cases and deaths per million population due to COVID-19. This is due to international connectedness and mobility of their population related to trade and tourism, and their vulnerability related to older populations and higher rates of non-communicable diseases. We have also identified that the burden of the pandemic is also variable among high- and middle-income countries due to differences in the governance of the pandemic, fragmentation of health systems, and socio-economic inequities.

The COVID-19 pandemic demonstrates that every country remains vulnerable to public health emergencies. The aspiration towards a healthier and safer society requires that countries develop and implement a coherent and context-specific national strategy, improve governance of public health emergencies, build the capacity of their (public) health systems, minimize fragmentation, and tackle upstream structural issues, including socio-economic inequities. This is possible through a primary health care approach, which ensures provision of universal and equitable promotive, preventive and curative services, through whole-of-government and whole-of-society approaches.

The pandemic of Coronavirus Disease 2019 (COVID-19) is a timely reminder of the nature and impact of emerging infectious diseases that become Public Health Emergency of International Concern (PHEIC) [ 1 ]. The COVID-19 pandemic takes variable shapes and forms in how it affects communities in different regions and countries [ 2 , 3 ]. As of 12 January, 2022, there were over 314 million cases and over 5.5 million deaths notified around the globe since the start of the pandemic. The number of cases per million population ranged from 7410 in Africa to 131,730 in Europe while the number of deaths per million population ranged from 110 in Oceania to 2740 in South America. Case-fatality rates (CFRs) ranged from 0.3% in Oceania to 2.9% in South America [ 4 , 5 ]. Regions and countries with high human development index (HDI), which is a composite index of life expectancy, education, and per capita income indicators [ 6 ], are affected by COVID-19 more than regions with low HDI. North America and Europe together account for 55 and 51% of cases and deaths, respectively. Regions with high HDI are affected by COVID-19 despite their high universal health coverage index (UHCI) and Global Health Security index (GHSI) [ 7 ].

This seems to be a paradox (against the established knowledge that countries with weak (public) health systems capacity will have worse health outcomes) in that the countries with higher UHCI and GHSI have experienced higher burdens of COVID-19 [ 7 ]. The paradox can partially be explained by variations in testing algorithms, capacity for testing, and reporting across different countries. Countries with high HDI have health systems with a high testing capacity; the average testing rate per million population is less than 32, 000 in Africa and 160,000 in Asia while it is more than 800, 000 in HICs (Europe and North America). This enables HICs to identify more confirmed cases that will ostensibly increase the number of reported cases [ 3 ]. Nevertheless, these are insufficient to explain the stark differences between countries with high HDI and those with low HDI. Many countries with high HDI have a high testing rate and a higher proportion of symptomatic and severe cases, which are also associated with higher deaths and CFRs [ 7 ]. On the other hand, there are countries with high HDI that sustain a lower level of the epidemic than others with a similar high HDI. It is, therefore, vital to analyse the heterogeneity of the COVID-19 pandemic and explain why some countries with high HDI, UHCI and GHSI have the highest burden of COVID-19 while others are able to suppress their epidemics and mitigate its impacts.

The objective of this study was to analyse the COVID-19 pandemic and understand its variable expression with the intention to learn lessons for an effective and sustainable response to public health emergencies. We hypothesised that high levels of HDI, UHCI and GHSI are essential but not sufficient to prevent and control COVID-19.

We conducted an explanatory mixed-methods study to understand and explain the heterogeneity of the pandemic around the world. The study integrated quantitative and qualitative secondary data. The following steps were included in the research process: (i) collecting and analysing quantitative epidemiological data, (ii) conducting literature review of qualitative secondary data and (iii) evaluating countries’ pandemic responses to explain the variability in the COVID-19 epidemiological outcomes. The study then illuminated specific factors that were vital towards an effective and sustainable epidemic response.

We used the publicly available secondary data sources from Johns Hopkins University ( https://coronavirus.jhu.edu/data/new-cases ) for COVID-19 and UNDP 2020 HDI report ( http://hdr.undp.org/en/2019-report ) for HDI, demographic and epidemiologic variables. These are open data sources which are regularly updated and utilized by researchers, policy makers and funders. We performed a correlation analysis of the COVID-19 pandemic. We determined the association between COVID-19 cases, severity, deaths and CFRs at the 0.01 and 0.05 levels (2-tailed). We used Spearman’s correlation analysis, as there is no normal distribution of the variables [ 8 ].

The UHCI is calculated as the geometric mean of the coverage of essential services based on 17 tracer indicators from: (1) reproductive, maternal, newborn and child health; (2) infectious diseases; (3) non-communicable diseases; and, (4) service capacity and access and health security [ 9 ]. The GHSI is a composite measure to assess a country’s capability to prevent, detect, and respond to epidemics and pandemics [ 10 ].

We then conducted a document review to explain the epidemic patterns in different countries. Secondary data was obtained from peer-reviewed journals, reputable online news outlets, government reports and publications by public health-related associations, such as the WHO. To explain the variability of COVID-19 across countries, a list of 14 indicators was established to systematically assess country’s preparedness, actual pandemic response, and overall socioeconomic and demographic profile in the context of COVID-19. The indicators used in this study include: 1) Universal Health Coverage Index, 2) public health capacity, 3) Global Health Security Index, 4) International Health Regulation, 5) leadership, governance and coordination of response, 6) community mobilization and engagement, 7) communication, 8) testing, quarantines and social distancing, 9) medical services at primary health care facilities and hospitals, 10) multisectoral actions, 11) social protection services, 12) absolute and relative poverty status, 13) demography, and 14) burden of communicable and non-communicable diseases. These indicators are based on our previous studies and recommendation from the World Health Organization [ 3 , 4 ]. We conducted thematic analysis and synthesis to identify the factors that may explain the heterogeneity of the pandemic.

Heterogeneity of COVID-19 cases and deaths around the world: what can explain it?

Table  1 indicates that the pandemic of COVID-19 is heterogeneous around regions of the world. Figure  1 also shows that there is a strong and significant correlation between HDI and globalisation (with an increase in trade and tourism as proxy indicators) and a corresponding strong and significant correlation with COVID-19 burden.

figure 1

Human development index and its correlates associated with COVID-19 in 189 countries*

Globalisation and pandemics interact in various ways, including through international trade and mobility, which can lead to multiple waves of infections [ 11 ]. In at least the first waves of the pandemic, countries with high import and export of consumer goods, food products and tourism have high number of cases, severe cases, deaths and CFRs. Countries with high HDI are at a higher risk of importing (and exporting) COVID-19 due to high mobility linked to trade and tourism, which are drivers of the economy. These may have led to multiple introductions of COVID-19 into these countries before border closures.

The COVID-19 pandemic was first identified in China, which is central to the global network of trade, from where it spread to all parts of the world, especially those countries with strong links with China [ 12 ]. The epidemic then spread to Europe. There is very strong regional dimension to manufacturing and trading, which could be facilitate the spread of the virus. China is the heart of ‘Factory Asia’; Italy is in the heart of ‘Factory Europe’; the United States is the heart of ‘Factory North America’; and Brazil is the heart of ‘Factory Latin America’ [ 13 ]. These are the countries most affected by COVID-19 during the first wave of the pandemic [ 2 , 3 , 14 ].

It is also important to note that two-third of the countries currently reporting more than a million cases are middle-income countries (MICs), which are not only major emerging market economies but also regional political powers, including the BRICS countries (Brazil, Russia, India and South Africa) [ 3 , 15 ]. These countries participate in the global economy, with business travellers and tourists. They also have good domestic transportation networks that facilitate the internal spread of the virus. The strategies that helped these countries to become emerging markets also put them at greater risk for importing and spreading COVID-19 due to their connectivity to the rest of the world.

In addition, countries with high HDI may be more significantly impacted by COVID-19 due to the higher proportion of the elderly and higher rates of non-communicable diseases. Figure 1 shows that there is a strong and significant correlation between HDI and demographic transition (high proportion of old-age population) and epidemiologic transition (high proportion of the population with non-communicable diseases). Countries with a higher proportion of people older than 65 years and NCDs (compared to communicable diseases) have higher burden of COVID-19 [ 16 , 17 , 18 , 19 , 20 ]. Evidence has consistently shown a higher risk of severe COVID-19 in older individuals and those with underlying health conditions [ 21 , 22 , 23 , 24 , 25 ]. CFR is age-dependent; it is highest in persons aged ≥85 years (10 to 27%), followed by those among persons aged 65–84 years (3 to 11%), and those among persons aged 55-64 years (1 to 3%) [ 26 ].

On the other hand, regions and countries with low HDI have, to date, experienced less severe epidemics. For instance, as of January 12, 2022, the African region has recorded about 10.3 million cases and 233,000 deaths– far lower than other regions of the world (Table 1 ) [ 27 ]. These might be due to lower testing rates in Africa, where only 6.5% of the population has been tested for the virus [ 14 , 28 ], and a greater proportion of infections may remain asymptomatic [ 29 ]. Indeed, the results from sero-surveys in Africa show that more than 80% of people infected with the virus were asymptomatic compared to an estimated 40-50% asymptomatic infections in HICs [ 30 , 31 ]. Moreover, there is a weak vital registration system in the region indicating that reports might be underestimating and underreporting the disease burden [ 32 ]. However, does this fully explain the differences observed between Africa and Europe or the Americas?

Other possible factors that may explain the lower rates of cases and deaths in Africa include: (1) Africa is less internationally connected than other regions; (2) the imposition of early strict lockdowns in many African countries, at a time when case numbers were relatively small, limited the number of imported cases further [ 2 , 33 , 34 ]; (3) relatively poor road network has also limited the transmission of the virus to and in rural areas [ 35 ]; (4) a significant proportion of the population resides in rural areas while those in urban areas spend a lot of their time mostly outdoors; (5) only about 3% of Africans are over the age of 65 (so only a small proportion are at risk of severe COVID-19) [ 36 ]; (6) lower prevalence of NCDs, as disease burden in Africa comes from infectious causes, including coronaviruses, which may also have cross-immunity that may reduce the risk of developing symptomatic cases [ 37 ]; and (7) relative high temperature (a major source of vitamin D which influences COVID-19 infection and mortality) in the region may limit the spread of the virus [ 38 , 39 ]. We argue that a combination of all these factors might explain the lower COVID-19 burden in Africa.

The early and timely efforts by African leaders should not be underestimated. The African Union, African CDC, and WHO convened an emergency meeting of all African ministers of health to establish an African taskforce to develop and implement a coordinated continent-wide strategy focusing on: laboratory; surveillance; infection prevention and control; clinical treatment of people with severe COVID-19; risk communication; and supply chain management [ 40 ]. In April 2021, African Union and Africa CDC launched the Partnerships for African Vaccine Manufacturing (PAVM), framework to expanding Africa’s vaccine manufacturing capacity for health security [ 41 ].

Heterogeneity of the pandemic among countries with high HDI: what can explain it?

Figures 2 and 3 illustrate the variability of cases and deaths due to the COVID-19 pandemic across high-income countries (HICs). Contrary to the overall positive correlation between high HDI and cases, deaths and fatality rates due to COVID-19, there are outlier HICs, which have been able to control the epidemic. Several HICs, such as New Zealand, Australia, South Korea, Japan, Denmark, Iceland, and Norway, managed to contain their epidemics (Figs. 2 and 3 ) [ 15 , 42 , 43 ]. It is important to note that most of these countries (especially the island states) have far less cross-border mobility than other HICs.

figure 2

Scatter plot of COVID-19 cases per million population in countries with high human development index (> 0.70)

figure 3

Scatter plot of COVID-19 deaths per million population in countries with high human development index (> 0.70)

HICs that have been successful at controlling their epidemics have similar characteristics, which are related to governance of the response [ 44 ], synergy between UHC and GHS, and existing relative socio-economic equity in the country. Governance and leadership is a crucial factor to explain the heterogeneity of the epidemic among countries with high HDI [ 45 ]. There has been substantial variation in the nature and timing of the public health responses implemented [ 46 ]. Adaptable and agile governments seem better able to respond to their epidemics [ 47 , 48 ]. Countries that have fared the best are the ones with good governance and public support [ 49 ]. Countries with an absence of coherent leadership and social trust have worse outcomes than countries with collective action, whether in a democracy or autocracy, and rapid mobilisation of resources [ 50 ]. The erosion of trust in the United States government has hurt the country’s ability to respond to the COVID-19 crisis [ 51 , 52 ]. The editors of the New England Journal of Medicine argued that the COVID-19 crisis has produced a test of leadership; but, the leaders in the United States had failed that test [ 47 ].

COVID-19 has exposed the fragility of health systems, not only in the public health and primary care, but also in acute and long-term care systems [ 49 ]. Fragmentation of health systems, defined here to mean inadequate synergy and/ or integration between GHS and UHC, is typical of countries most affected by the COVID-19 pandemic. Even though GHS and UHC agendas are convergent and interdependent, they tend to have different policies and practices [ 53 ]. The United States has the highest index for GHS preparedness; however, it has reported the world’s highest number of COVID-19 cases and deaths due to its greatly fragmented health system [ 54 , 55 ]. Countries with health systems and policies that are able to integrate International Health Regulations (IHR) core capacities with primary health care (PHC) services have been effective at mitigating the effects of COVID-19 [ 50 , 53 ]. Australia has been able to control its COVID-19 epidemic through a comprehensive primary care response, including protection of vulnerable people, provision of treatment and support services to affected people, continuity of regular healthcare services, protection and support of PHC workers and primary care services, and provision of mental health services to the community and the primary healthcare workforce [ 56 ]. Strict implementation of public health and social intervention together with UHC systems have ensured swift control of the epidemics in Singapore, South Korea, and Thailand [ 57 ].

The heterogeneity of cases and deaths, due to COVID-19, is also explained by differences in levels of socio-economic inequalities, which increase susceptibility to acquiring the infection and disease progression as well as worsening of health outcomes [ 58 ]. COVID-19 has been a stress test for public services and social protection systems. There is a higher burden of COVID-19 in Black, Asian and Minority Ethnic individuals due to socio-economic inequities in HICs [ 59 , 60 ]. Poor people are more likely to live in overcrowded accommodation, are more likely to have unstable work conditions and incomes, have comorbidities associated with poverty and precarious living conditions, and reduced access to health care [ 59 ].

The epidemiology of COVID-19 is also variable across MICs, with HDI between 0.70 and 0.85, around the world. Overall, the epidemic in MICs is exacerbated by the rapid demographic and epidemiologic transitions as well as high prevalence of obesity. While India and Brazil witnessed rapidly increasing rates of cases and deaths, China, Thailand, Vietnam have experienced a relatively lower disease burden [ 15 ]. This heterogeneity may be attributed to a number of factors, including governance, communication and service delivery. Thailand, China and Vietnam have implemented a national harmonized strategic response with decentralized implementation through provincial and district authorities [ 61 ]. Thailand increased its testing capacity from two to over 200 certified facilities that could process between 10,000 to 100,000 tests per day; moreover, over a million village health volunteers in Thailand supported primary health services [ 62 , 63 ]. China’s swift and decisive actions enabled the country to contain its epidemic though there was an initial delay in detecting the disease. China has been able to contain its epidemic through community-based measures, very high public cooperation and social mobilization, strategic lockdown and isolation, multi-sector action [ 64 ]. Overall, multi-level governance (effective and decisive leadership and accountability) of the response, together with coordination of public health and socio-economic services, and high levels of citizen adherence to personal protection, have enabled these countries to successfully contain their epidemics [ 61 , 65 , 66 ].

On the other hand, the Brazilian leadership was denounced for its failure to establish a national surveillance network early in the pandemic. In March 2020, the health minister was reported to have stated that mass testing was a waste of public funding, and to have advised against it [ 67 ]. This was considered as a sign of a collapse of public health leadership, characterized by ignorance, neoliberal authoritarianism [ 68 ]. There were also gaps in the public health capacity in different municipalities, which varied greatly, with a considerable number of Brazilian regions receiving less funding from the federal government due to political tension [ 69 ]. The epidemic has a disproportionate adverse burden on states and municipalities with high socio-economic vulnerability, exacerbated by the deep social and economic inequalities in Brazil [ 70 ].

India is another middle-income country with a high burden of COVID-19. It was one of the countries to institute strict measures in the early phase of the pandemic [ 71 , 72 ]. However, the government eased restrictions after the claim that India had beaten the pandemic, which lead to a rapid increase in disease incidence. Indeed, on 12 January 2022, India reported 36 million cumulative cases and almost 485,000 total deaths [ 15 ]. The second wave of the epidemic in India exposed weaknesses in governance and inadequacies in the country’s health and other social systems [ 73 ]. The nature of the Indian federation, which is highly centripetal, has prevented state and local governments from tailoring a policy response to suit local needs. A centralized one-size-fits-all strategy has been imposed despite high variations in resources, health systems capacity, and COVID-19 epidemics across states [ 74 ]. There were also loose social distancing and mask wearing, mass political rallies and religious events [ 75 ]. Rapid community transmission driven by high population density and multigenerational households has been a feature of the current wave in India [ 76 ]. In addition, several new variants of the virus, including the UK (B.1.1.7), the South Africa (20H/501Y or B.1.351), and Brazil (P.1), alongside a newly identified Indian variant (B.1.617), are circulating in India and have been implicated as factors in the second wave of the pandemic [ 75 , 76 ].

Heterogeneity of case-fatality rates around the world: what can explain it?

The pandemic is characterized by variable CFRs across regions and countries that are negatively associated with HDI (Fig.  1 ). The results presented in Fig.  4 show that the proportion of elderly population and rate of obesity are important factors which are positively associated with CFR. On the other hand, UHC, IHR capacity and other indicators of health systems capacity (health workforce density and hospital beds) are negatively associated with the CFR (Figs. 1 and 4 ).

figure 4

Correlates of COVID-19 cases, deaths and case-fatality rates in 189 countries

The evidence from several research indicates that heterogeneity can be explained by several factors, including differences in age-pyramid, socio-economic status, access to health services, or rates of undiagnosed infections. Differences in age-pyramid may explain some of the observed variation in epidemic severity and CFR between countries [ 77 ]. CFRs across countries look similar when taking age into account [ 78 ]. The elderly and other vulnerable populations in Africa and Asia are at a similar risk as populations in Europe and Americas [ 79 ]. Data from European countries suggest that as high as 57% of all deaths have happened in care homes and many deaths in the US have also occurred in nursing homes. On the other hand, in countries such as Mexico and India, individuals < 65 years contributed the majority of deaths [ 80 ].

Nevertheless, CFR also depends on the quality of hospital care, which can be used to judge the health system capacity, including the availability of healthcare workers, resources, and facilities, which affects outcomes [ 81 ]. The CFR can increase if there is a surge of infected patients, which adds to the strain on the health system [ 82 ]. COVID-19 fatality rates are affected by numerous health systems factors, including bed capacity, existence and capacity of intensive care unit (ICU), and critical care resources (such as oxygen and dexamethasone) in a hospital. Regions and countries with high HDI have a greater number of acute care facilities, ICU, and hospital bed capacities compared to lower HDI regions and countries [ 83 ]. Differences in health systems capacity could explain why North America and Europe, which have experienced much greater number of cases and deaths per million population, reported lower CFRs than the Southern American and the African regions, partly also due to limited testing capacity in these regions (Table 1 ) [ 84 , 85 , 86 ]. The higher CFR in Southern America can be explained by the relatively lower health systems surge capacity that could not adequately respond to the huge demand for health services [ 69 , 86 ]. The COVID-19 pandemic has highlighted existing health systems’ weaknesses, which are not able to effectively prepare for and respond to PHEs [ 87 ]. The high CFRs in the region are also exacerbated by the high social inequalities [ 69 ].

On the other hand, countries in Asia recorded lower CFRs (~ 1.4%) despite sharing many common risk factors (including overcrowding and poverty, weak health system capacity etc) with Africa. The Asian region shares many similar protective factors to the African region. They have been able to minimize their CFR by suppressing the transmission of the virus and flattening the epidemic curve of COVID-19 cases and deaths. Nevertheless, the epidemic in India is likely to be different because it has exceeded the health system capacity to respond and provide basic medical care and medical supplies such as oxygen [ 88 ]. Overall, many Asian countries were able to withstand the transmission of the virus and its effect due to swift action by governments in the early days of the pandemic despite the frequency of travel between China and neighbouring countries such as Hong Kong, Taiwan and Singapore [ 89 ]. This has helped them to contain the pandemic to ensure case numbers remain within their health systems capacity. These countries have benefited from their experience in the past in the prevention and control of epidemics [ 90 ].

There are a number of issues with the use of the CFR to compare the management of the pandemic between countries and regions [ 91 ], as it does not depict the true picture of the mortality burden of the pandemic. A major challenge with accurate calculation of the CFR is the denominator on number of identified cases, as asymptomatic infections and patients with mild symptoms are frequently left untested, and therefore omitted from CFR calculations. Testing might not be widely available, and proactive contact tracing and containment might not be employed, resulting in a smaller denominator, and skewing to a higher CFR [ 82 ]. It is, therefore, far more relevant to estimate infection fatality rate (IFR), the proportion of all infected individuals who have died due to the infection [ 91 ], which is central to understanding the public health impact of the pandemic and the required policies for its prevention and control [ 92 ].

Estimates of prevalence based on sero-surveys, which includes asymptomatic and mildly symptomatic infections, can be used to estimate IFR [ 93 ]. In a systematic review of 17 studies, seroprevalence rates ranged from 0.22% in Brazil to 53% in Argentina [ 94 ]. The review also identified that the seroprevalence estimate was higher than the cumulative reported case incidence, by a factor between 1.5 times in Germany to 717 times in Iran, in all but two studies (0.56 times in Brazil and 0.88 times in Denmark) [ 94 , 95 ]. The difference between seroprevalence and cumulative reported cases might be due to asymptomatic cases, atypical or pauci-symptomatic cases, or the lack of access to and uptake of testing [ 94 ]. There is only a modest gap between the estimated number of infections from seroprevalence surveys and the cumulative reported cases in regions with relatively thorough symptom-based testing. Much of the gap between reported cases and seroprevalence is likely to be due to undiagnosed symptomatic or asymptomatic infections [ 94 ].

Collateral effects of the COVID-19 pandemic

It is important to note that the pandemic has significant collateral effects on the provision of essential health services, in addition to the direct health effects [ 96 ]. Disruptions in the provision of essential health services, due to COVID-19, were reported by nearly all countries, though it is more so in lower-income than higher-income countries [ 97 , 98 ]. The biggest impact reported is on provision of day-to-day primary care to prevent and manage some of the most common health problems [ 99 ].

The causes of disruptions in service delivery were a mix of demand and supply factors [ 100 ]. Countries reported that just over one-third of services were disrupted due to health workforce-related reasons (the most common causes of service disruptions), supply chains, community mistrust and fears of becoming infected, and financial challenge s[ 101 ]. Cognizant of the disruptive effects of the pandemic, countries have reorganized their health system.

Countries with better response to COVID-19 have mobilized, trained and reallocated their health workforce in addition to hiring new staff, using volunteers and medical trainees and mobilizing retirees [ 102 ]. Several strategies have also been implemented to mitigate disruptions in service delivery and utilization, including: triaging to identify the most urgent patient needs, and postponing elective medical procedures; switching to alternative models of care, such as providing more home-based care and telemedicine [ 101 ].

This study identifies that the COVID-19 pandemic, in terms f cases and deaths, is heterogeneous around the world. This variability is explained by differences in vulnerability, preparedness, and response. It confirms that a high level of HDI, UHCI and GHSI are essential but not sufficient to control epidemics [ 103 ]. An effective response to public health emergencies requires a joint and reinforcing implementation of UHC, health emergency and disease control priorities [ 104 , 105 ], as well as good governance and social protection systems [ 106 ]. Important lessons have been learned to cope better with the COVID-19 pandemic and future emerging or re-emerging pandemics. Countries should strengthen health systems, minimize fragmentation of public health, primary care and secondary care, and improve coordination with other sectors. The pandemic has exposed the health effects of longstanding social inequities, which should be addressed through policies and actions to tackle vulnerability in living and working conditions [ 106 ].

The shift in the pandemic epicentre from high-income to MICs was observed in the second global wave of the pandemic. This is due to in part to the large-scale provision of vaccines in HICs [ 15 ] as well as the limitations in the response in LMICs, including inadequate testing, quarantine and isolation, contact tracing, and social distancing. The second wave of the pandemic in low- and middle-income countries spread more rapidly than the first wave and affected younger and healthier populations due to factors, including poor government decision making, citizen behaviour, and the emergence of highly transmissible SARS-CoV-2 variants [ 107 ]. It has become catastrophic in some MICs to prematurely relax key public health measures, such as mask wearing, physical distancing, and hand hygiene [ 108 ].

There is consensus that global vaccination is essential to ending the pandemic. Universal and equitable vaccine delivery, implemented with high volume, speed and quality, is vital for an effective and sustainable response to the current pandemic and future public health emergencies. There is, however, ongoing concern regarding access to COVID-19 vaccines in low-income countries [ 109 ]. Moreover, there is shortage of essential supplies, including oxygen, which has had a major impact on the prevention and control of the pandemic. It is, therefore, vital to transform (through good governance and financing mechanisms) the ACT-A platform to deliver vaccines, therapeutics, diagnostics, and other essential supplies [ 109 , 110 ]. The global health community has the responsibility to address these inequalities so that we can collectively end the pandemic [ 107 ].

The Omicron variant has a huge role in the current wave around the world despite high vaccine coverage [ 111 ]. Omicron appears to spread rapidly around the world ever since it was identified in November 2021 [ 112 ]. It becomes obvious that vaccination alone is inadequate for controlling the infection. This has changed our understanding of the COVID-19 pandemic endgame. The emergence of new variants of concern and their spread around the world has highlighted the importance of combination prevention, including high vaccination coverage in combination with other public health prevention measures [ 112 ].

Overall, the COVID-19 pandemic and the response to it emphasise valuable lessons towards an effective and sustainable response to public health emergencies. We argue that the PHC approach captures the different preparedness and response strategies required towards ensuring health security and UHC [ 113 ]. The PHC approach enables countries to progressively realize universal access to good-quality health services (including essential public health functions) and equity, empower people and communities, strengthen multi-sectoral policy and action for health, and enhance good governance [ 114 ]. These are essential in the prevention and control of public health emergencies, to suppress transmission, and reduce morbidity and mortality [ 115 ]. Access to high-quality primary care is at the foundation of any strong health system [ 116 ], which will, in turn, have effect on containing the epidemic, and reducing mortality and CFR [ 117 ]. Australia is a good example in this regard because it has implemented a comprehensive PHC approach in combination with border restrictions to ensure health system capacity is not exceeded [ 56 ]. The PHC approach will enable countries to develop and implement a context-specific health strategy, enhance governance, strengthen their (public) health systems, minimize segmentation and fragmentation, and tackle upstream structural issues, including discrimination and socio-economic inequities [ 118 ]. This is the type of public health approach (comprehensive, equity-focused and participatory) that will be effective and sustainable to tackle public health emergencies in the twenty-first century [ 119 , 120 ]. In addition, it is vital to transform the global and regional health systems, with a strong IHR and an empowered WHO at the apex [ 121 ]. We contend that this is the way towards a healthier and safer country, region and world.

The COVID-19 pandemic demonstrates that the world remains vulnerable to public health emergencies with significant health and other socio-economic impacts. The pandemic takes variable shapes and forms across regions and countries around the world. The pandemic has impacted countries with inadequate governance of the epidemic, fragmentation of their health systems and higher socio-economic inequities more than others. We argue that adequate response to public health emergencies requires that countries develop and implement a context-specific national strategy, enhance governance of public health emergency, build the capacity of their health systems, minimize fragmentation, and tackle socio-economic inequities. This is possible through a PHC approach that provides universal access to good-quality health services through empowered communities and multi-sectoral policy and action for health development. The pandemic has affected every corner of the world; it has demonstrated that “no country is safe unless other countries are safe”. This should be a call for a strong global health system based on the values of justice and capabilities for health.

Availability of data and materials

Data are available in a public, open access repository: Johns Hopkins University: https://coronavirus.jhu.edu/data/new-cases , and UNDP: http://hdr.undp.org/en/2019-report ; WHO: https://www.who.int/publications/m/item/weekly-epidemiological-update%2D%2D-22-december-2020

Abbreviations

Coronavirus Disease 2019

Case-fatality rates

Human development index

Universal health coverage index

Global Health Security index

High-income countries

Middle-income countries

El Zowalaty ME, Järhult JD. From SARS to COVID-19: A previously unknown SARS-CoV-2 virus of pandemic potential infecting humans–Call for a One Health approach. One Health. 2020;9:100124. https://doi.org/10.1016/j.onehlt.2020.100124 .

Van Damme W, Dahake R, Delamou A, Ingelbeen B, Wouters E, Vanham G, et al. The COVID-19 pandemic: diverse contexts; different epidemics—how and why? BMJ Glob Health. 2020;5(7):e003098.

Article   PubMed   Google Scholar  

World Health Organization (WHO): Coronavirus disease ( COVID-19): situation report, 150. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200618-covid-19-sitrep-150.pdf .

Weekly epidemiological update - 22 December 2020 [ https://www.who.int/publications/m/item/weekly-epidemiological-update%2D%2D-22-december-2020 ].

Worldometer: COVID-19 coronavirus pandemic. 2020. https://www.worldometers.info/coronavirus/ .

Anand S, Sen A. Human Development Index: Methodology and Measurement. 1994. http://hdr.undp.org/en/content/human-development-index-methodology-and-measurement .

De Larochelambert Q, Marc A, Antero J, Le Bourg E, Toussaint J-F. Covid-19 mortality: a matter of vulnerability among nations facing limited margins of adaptation. Public Health. 2020;8. https://doi.org/10.3389/fpubh.2020.604339 .

de Winter JC, Gosling SD, Potter J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data. Psychol Methods. 2016;21(3):273.

World Health Organization. Universal health coverage [ http://www.who.int/universal_health_coverage/en/ ].

Johns Hopkins Center for Health Security. Global Health Security Index [ https://www.ghsindex.org/ ].

Pol Antràs SJR. Esteban Rossi-Hansberg: how do globalisation and pandemics interact? Surprising insights from a new model. In: #LSEThinks | CEP | global development vol. 2020. London: London School of Economics; 2020.

Google Scholar  

Cai P. Understanding China’s belt and road initiative; 2017.

Baldwin R, Tomiura E. Thinking ahead about the trade impact of COVID-19. Economics in the Time of COVID-19. 2020;59. https://repository.graduateinstitute.ch/record/298220?ln=en .

Organization WH: Coronavirus disease ( COVID-19): situation report, 182. 2020.

Johns Hopkins University: COVID-19 Map - Johns Hopkins Coronavirus Resource Center. In. Edited by Security JHUCfH; 2021. https://coronavirus.jhu.edu/map.html .

Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;395(10228):e52.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061–9.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.

Hussain A, Bhowmik B, Do Vale Moreira NC. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. https://doi.org/10.1016/j.diabres.2020.108142 . Epub 2020 Apr 9.

Covid C, COVID C, COVID C, Chow N, Fleming-Dutra K, Gierke R, Hall A, et al. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–march 28, 2020. Morb Mortal Wkly Rep. 2020;69(13):382.

Group C-S. Characteristics of COVID-19 patients dying in Italy: report based on available data on March 20th, 2020. Rome: Instituto Superiore Di Sanita; 2020.  https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_20_marzo_eng.pdf .

Guan W-j, Ni Z-y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

Article   CAS   PubMed   Google Scholar  

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. Jama. 2020;323(16):1612–4.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new York City area. JAMA. 2020;323(20):2052–9. https://doi.org/10.1001/jama.2020.6775 .

Covid C, Team R. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–march 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343–6.

Article   Google Scholar  

Mbow M, Lell B, Jochems SP, Cisse B, Mboup S, Dewals BG, et al. COVID-19 in Africa: dampening the storm? Science. 2020;369(6504):624–6.

Kavanagh MM, Erondu NA, Tomori O, Dzau VJ, Okiro EA, Maleche A, et al. Access to lifesaving medical resources for African countries: COVID-19 testing and response, ethics, and politics. Lancet. 2020;395(10238):1735–8.

Nordling L. Africa's pandemic puzzle: why so few cases and deaths? In: American Association for the Advancement of Science; 2020.

Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020;173(5):362–7. https://doi.org/10.7326/M20-3012 . Epub 2020 Jun 3.

Nikolai LA, Meyer CG, Kremsner PG, Velavan TP. Asymptomatic SARS coronavirus 2 infection: invisible yet invincible. Int J Infect Dis. 2020;100:112–6. https://doi.org/10.1016/j.ijid.2020.08.076 . Epub 2020 Sep 3.

Rao C, Bradshaw D, Mathers CD. Improving death registration and statistics in developing countries: lessons from sub-Saharan Africa. Southern Afr J Demography. 2004:81–99.

Mehtar S, Preiser W, Lakhe NA, Bousso A, TamFum J-JM, Kallay O, et al. Limiting the spread of COVID-19 in Africa: one size mitigation strategies do not fit all countries. Lancet Glob Health. 2020;8(7):e881–3. Published online 2020 Apr 28. https://doi.org/10.1016/S2214-109X(20)30212-6 .

Nachega J, Seydi M, Zumla A. The late arrival of coronavirus disease 2019 (COVID-19) in Africa: mitigating pan-continental spread. Clin Infect Dis. 2020;71(15):875–8.

Gwilliam K, Foster V, Archondo-Callao R, Briceno-Garmendia C, Nogales A, Sethi K. Africa infrastructure country diagnostic: roads in sub-Saharan Africa: The World Bank; 2008.

Guengant J-P. Africa’s population: history, current status, and projections. In: Africa's Population: In Search of a Demographic Dividend: Springer; 2017. p. 11–31.

Collaborators GOD, Bernabe E, Marcenes W, Hernandez C, Bailey J, Abreu L, et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J Dent Res. 2020;99(4):362–73.

Cambaza EM, Viegas GC, Cambaza C. Manuel a: potential impact of temperature and atmospheric pressure on the number of cases of COVID-19 in Mozambique, southern Africa. J Public Health Epidemiol. 2020;12(3):246–60.

Lawal Y. Africa’s low COVID-19 mortality rate: a paradox? Int J Infect Dis. 2021;102:118–22.

Nkengasong JN, Mankoula W. Looming threat of COVID-19 infection in Africa: act collectively, and fast. Lancet. 2020;395(10227):841–2.

African Union and Africa CDC. African union and Africa CDC launches partnerships for African vaccine manufacturing (PAVM), framework to achieve it and signs 2 MoUs: African Union and Africa CDC; 2021.

Forbes. What Do Countries With The Best Coronavirus Responses Have In Common? Women Leaders [ https://www.forbes.com/sites/avivahwittenbergcox/2020/04/13/what-do-countries-with-the-best-coronavirus-reponses-have-in-common-women-leaders/#603bd9433dec ].

University of Notre Dame. What can we learn from Austria’s response to COVID-19? [ https://keough.nd.edu/what-can-we-learn-from-austrias-response-to-covid-19/ ].

Stoller JK. Reflections on leadership in the time of COVID-19. BMJ Leader. 2020. https://doi.org/10.1136/leader-2020-000244 .

Houston Public Media. What 6 Of The 7 Countries With The Most COVID-19 Cases Have In Common [ https://www.npr.org/sections/goatsandsoda/2020/07/31/896879448/the-nations-with-the-most-to-lose-from-covid-19 ].

Hale T, Petherick A, Phillips T, Webster S. Variation in government responses to COVID-19. Blavatnik school of government working paper. 2020;31. https://en.unesco.org/inclusivepolicylab/sites/default/files/learning/document/2020/4/BSG-WP-2020-031-v3.0.pdf .

The Editors. Dying in a leadership vacuum. N Engl J Med. 2020;383(15):1479–80.

The Cable News Network. US and UK are bottom of the pile in rankings of governments' handling of coronavirus pandemic [ https://edition.cnn.com/2020/08/27/world/global-coronavirus-attitudes-pew-intl/index.html ].

Huston P, Campbell J, Russell G, Goodyear-Smith F, Phillips RL, van Weel C, et al. COVID-19 and primary care in six countries. BJGP Open. 2020;4(4):bjgpopen20X101128. https://doi.org/10.3399/bjgpopen20X101128 .

Goodyear-Smith F, Kinder K, Eden AR, Strydom S, Bazemore A, Phillips R, et al. Primary care perspectives on pandemic politics. Glob Public Health. 2021;16(8-9):1304–19. https://doi.org/10.1080/17441692.2021.1876751 . Epub 2021 Jan 24.

Rutledge PE. Trump, COVID-19, and the war on expertise. Am Rev Public Adm. 2020;50(6-7):505–11.

Ugarte DA, Cumberland WG, Flores L, Young SD. Public attitudes about COVID-19 in response to president trump's social media posts. JAMA Netw Open. 2021;4(2):e210101.

Article   PubMed   PubMed Central   Google Scholar  

Lal A, Erondu NA, Heymann DL, Gitahi G, Yates R. Fragmented health systems in COVID-19: rectifying the misalignment between global health security and universal health coverage. Lancet. 2021;397(10268):61–7. https://doi.org/10.1016/S0140-6736(20)32228-5 . Epub 2020 Dec 1.

Tromberg BJ, Schwetz TA, Pérez-Stable EJ, Hodes RJ, Woychik RP, Bright RA, et al. Rapid scaling up of Covid-19 diagnostic testing in the United States—the NIH RADx initiative. N Engl J Med. 2020;383(11):1071–7.

Marwaha J, Halamka J, Brat G. Lifesaving ventilators will sit unused without a national data-sharing effort; 2020.

Kidd MR. Five principles for pandemic preparedness: lessons from the Australian COVID-19 primary care response. Br J Gen Pract. 2020;70(696):316–7. https://doi.org/10.3399/bjgp20X710765 . Print 2020 Jul.

Hsu LY, Tan M-H. What Singapore can teach the US about responding to COVID-19. STAT News. 2020. https://www.statnews.com/2020/03/23/singapore-teach-united-states-about-covid-19-response/ .

Horton R. Offline: COVID-19 is not a pandemic. Lancet (London, England). 2020;396(10255):874.

Article   CAS   Google Scholar  

Raisi-Estabragh Z, McCracken C, Bethell MS, Cooper J, Cooper C, Caulfield MJ, et al. Greater risk of severe COVID-19 in black, Asian and minority ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25 (OH)-vitamin D status: study of 1326 cases from the UK biobank. J Public Health. 2020;42(3):451–60.

Hamidianjahromi A. Why African Americans are a potential target for COVID-19 infection in the United States. J Med Internet Res. 2020;22(6):e19934.

Tangcharoensathien V, Bassett MT, Meng Q, Mills A. Are overwhelmed health systems an inevitable consequence of covid-19? Experiences from China, Thailand, and New York State. BMJ. 2021;372. https://doi.org/10.1136/bmj.n83 .

Organization WH: COVID-19 health system response monitor, Thailand. 2020.

Narkvichien M. Thailand’s 1 million village health volunteers-“unsung heroes”-are helping guard communities nationwide from COVID-19. Nonthaburi: World Health Organization; 2020.

Kupferschmidt K, Cohen J. Can China's COVID-19 strategy work elsewhere? In: American Association for the Advancement of Science; 2020.

Al Saidi AMO, Nur FA, Al-Mandhari AS, El Rabbat M, Hafeez A, Abubakar A. Decisive leadership is a necessity in the COVID-19 response. Lancet. 2020;396(10247):295–8.

Forman R, Atun R, McKee M, Mossialos E. 12 lessons learned from the management of the coronavirus pandemic. Health Policy. 2020;124(6):577–80. https://doi.org/10.1016/j.healthpol.2020.05.008 .

Barberia LG, Gómez EJ. Political and institutional perils of Brazil's COVID-19 crisis. Lancet. 2020;396(10248):367–8.

Ortega F, Orsini M. Governing COVID-19 without government in Brazil: ignorance, neoliberal authoritarianism, and the collapse of public health leadership. Global Public Health. 2020;15(9):1257–77.

Ezequiel GE, Jafet A, Hugo A, Pedro D, Ana Maria M, Carola OV, et al. The COVID-19 pandemic: a call to action for health systems in Latin America to strengthen quality of care. Int J Qual Health Care. 2021;33(1):mzaa062.

Rocha R, Atun R, Massuda A, Rache B, Spinola P, Nunes L, et al. Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: a comprehensive analysis. Lancet Glob Health. 2021;9(6):e782–92. https://doi.org/10.1016/S2214-109X(21)00081-4 . Epub 2021 Apr 12.

Lancet T. India under COVID-19 lockdown. Lancet (London, England). 2020;395(10233):1315.

Siddiqui AF, Wiederkehr M, Rozanova L, Flahault A. Situation of India in the COVID-19 pandemic: India’s initial pandemic experience. Int J Environ Res Public Health. 2020;17(23):8994.

Article   CAS   PubMed Central   Google Scholar  

Taneja P, Bali AS. India’s domestic and foreign policy responses to COVID-19. Round Table. 2021;110(1):46–61.

Choutagunta A, Manish G, Rajagopalan S. Battling COVID-19 with dysfunctional federalism: lessons from India. South Econ J. 2021;87(4):1267–99.

Mallapaty S. India's massive COVID surge puzzles scientists. Nature. 2021;592(7856):667–8.

Thiagarajan K. Why is India having a covid-19 surge? In: British Medical Journal Publishing Group; 2021.

Fisman DN, Greer AL, Tuite AR. Age is just a number: a critically important number for COVID-19 case fatality. Ann Intern Med. 2020;173(9):762–3.

Sudharsanan N, Didzun O, Bärnighausen T, Geldsetzer P. The contribution of the age distribution of cases to COVID-19 case fatality across countries: a 9-country demographic study. Ann Intern Med. 2020;173(9):714–20. https://doi.org/10.7326/M20-2973 . Epub 2020 Jul 22.

Think Global Health. The Myth of South Asian Exceptionalism. In: He Myth of South Asian Exceptionalism: South Asia's young population conceals the effects that COVID-19 has on its older and more vulnerable people. vol. 2020; 2020.

Ioannidis JP, Axfors C, Contopoulos-Ioannidis DG. Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 2020;188:109890.

Kim D-H, Choe YJ, Jeong J-Y. Understanding and interpretation of case fatality rate of coronavirus disease 2019. J Korean Med Sci. 2020;35(12):e137. https://doi.org/10.3346/jkms.2020.35.e137 .

Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, Quek SC. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776–7.

Sorci G, Faivre B, Morand S. Explaining among-country variation in COVID-19 case fatality rate. Sci Rep. 2020;10(1):1–11.

Sen-Crowe B, Sutherland M, McKenney M, Elkbuli A. A closer look into global hospital beds capacity and resource shortages during the COVID-19 pandemic. J Surg Res. 2021;260:56–63.

Li M, Zhang Z, Cao W, Liu Y, Du B, Chen C, et al. Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach. Sci Total Environ. 2021;764:142810.

Undurraga EA, Chowell G, Mizumoto K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, march–august 2020. Infect Dis Poverty. 2021;10(1):1–11.

Taylor L. How Latin America is fighting covid-19, for better and worse. BMJ. 2020;370:m3319. https://doi.org/10.1136/bmj.m3319 .

Bhuyan A. Covid-19: India looks to import oxygen as cases surge, overwhelming hospitals. In: British Medical Journal Publishing Group; 2021.

An BY, Tang S-Y. Lessons from COVID-19 responses in East Asia: institutional infrastructure and enduring policy instruments. Am Rev Public Adm. 2020;50(6-7):790–800.

Chen H, Shi L, Zhang Y, Wang X, Sun G. A cross-country core strategy comparison in China, Japan, Singapore and South Korea during the early COVID-19 pandemic. Glob Health. 2021;17(1):1–10.

Kahathuduwa CN, Dhanasekara CS, Chin S-H. Case fatality rate in COVID-19: a systematic review and meta-analysis. J Prev Med Hyg. 2021;62(2):E311–20. https://doi.org/10.15167/2421-4248/jpmh2021.62.2.1627 . eCollection 2021 Jun.

Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. Int J Infect Dis. 2020.

Seoane B. A scaling approach to estimate the COVID-19 infection fatality ratio from incomplete data. PLoS One. 2021;16(2):e0246831. https://doi.org/10.1371/journal.pone.0246831 . eCollection 2021.

Byambasuren O, Dobler CC, Bell K, Rojas DP, Clark J, McLaws M-L, et al. Comparison of seroprevalence of SARS-CoV-2 infections with cumulative and imputed COVID-19 cases: systematic review. PLoS One. 2021;16(4):e0248946.

Shakiba M, Nazemipour M, Salari A, Mehrabian F, Nazari SSH, Rezvani SM, et al. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. Emerg Infect Dis. 2021;27(2):636.

Blanchet K, Alwan A, Antoine C, Cros MJ, Feroz F, Guracha TA, et al. Protecting essential health services in low-income and middle-income countries and humanitarian settings while responding to the COVID-19 pandemic. BMJ Glob Health. 2020;5(10):e003675.

Thome J, Coogan AN, Fischer M, Tucha O, Faltraco F. Challenges for mental health services during the 2020 COVID-19 outbreak in Germany. Psychiatry Clin Neurosci. 2020;74(7):407. https://doi.org/10.1111/pcn.13019 . Epub 2020 May 26.

Riley T, Sully E, Ahmed Z, Biddlecom A. Estimates of the potential impact of the COVID-19 pandemic on sexual and reproductive health in low-and middle-income countries. Int Perspect Sex Reprod Health. 2020;46:73–6.

World Health Organization (WHO): Maintaining essential health services: operational guidance for the COVID-19 context: interim guidance, 1 June 2020. In.: World Health Organization; 2020. https://www.who.int/publications/i/item/WHO-2019-nCoV-essential_health_services-2020.2 .

World Health Organization (WHO): Pulse survey on continuity of essential health services during the COVID-19 pandemic: interim report, 27 August 2020. In.: World Health Organization; 2020. https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-EHS_continuity-survey-2020.1 .

World Health Organization (WHO): Second round of the national pulse survey on continuity of essential health services during the COVID-19 pandemic: interim report, 22 April 2021. In.: World Health Organization; 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS-continuity-survey-2021.1 .

Organization WH. COVID-19: operational guidance for maintaining essential health services during an outbreak: interim guidance, 25 march 2020: World Health Organization; 2020.

Chen Y-Y, Assefa Y. The heterogeneity of the COVID-19 pandemic and national responses: an explanatory mixed-methods study. BMC Public Health. 2021;21(1):1–15.

World Health Organization (WHO). Thirteenth general programme of work 2019–2023. The seventy-first world health assembly. Geneva (Switzerland): World Health Organization; 2018.

Mahjour J, Mirza Z, Rashidian A, Atta H, Hajjeh R, Thieren M, et al. " promote health, keep the world safe, serve the vulnerable" in the eastern Mediterranean region. East Mediterr Health J. 2018;24(4):323–4.

Rollston R, Galea S. COVID-19 and the social determinants of health. Am J Health Promot. 2020;34(6):687–9. https://doi.org/10.1177/0890117120930536b .

Nachega JB, Sam-Agudu NA, Masekela R, van der Zalm MM, Nsanzimana S, Condo J, et al. Addressing challenges to rolling out COVID-19 vaccines in African countries. Lancet Glob Health. 2021;9(6):e746–8. https://doi.org/10.1016/S2214-109X(21)00097-8 . Epub 2021 Mar 10.

Skegg D, Gluckman P, Boulton G, Hackmann H, Karim SSA, Piot P, et al. Future scenarios for the COVID-19 pandemic. Lancet. 2021;397(10276):777–8.

Nhamo G, Chikodzi D, Kunene HP, Mashula N. COVID-19 vaccines and treatments nationalism: challenges for low-income countries and the attainment of the SDGs. Global Public Health. 2021;16(3):319–39.

Figueroa JP, Bottazzi ME, Hotez P, Batista C, Ergonul O, Gilbert S, et al. Urgent needs of low-income and middle-income countries for COVID-19 vaccines and therapeutics. Lancet. 2021;397(10274):562–4.

He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 omicron variant: characteristics and prevention. Med Comm (2020). 2021;2(4):838–45. https://doi.org/10.1002/mco2.110 .

Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126–8.

Sanders D, Nandi S, Labonté R, Vance C, Van Damme W. From primary health care to universal health coverage—one step forward and two steps back. Lancet. 2019;394(10199):619–21.

Hone T, Macinko J, Millett C. Revisiting Alma-Ata: what is the role of primary health care in achieving the sustainable development goals? Lancet. 2018;392(10156):1461–72.

Redwood-Campbell L, Abrahams J. Primary health care and disasters—the current state of the literature: what we know, gaps and next steps. Prehospital Disaster Med. 2011;26(3):184–91.

Bitton A, Ratcliffe HL, Veillard JH, Kress DH, Barkley S, Kimball M, et al. Primary health care as a foundation for strengthening health systems in low-and middle-income countries. J Gen Intern Med. 2017;32(5):566–71.

Dunlop C, Howe A, Li D, Allen LN. The coronavirus outbreak: the central role of primary care in emergency preparedness and response. BJGP Open. 2020;4(1):bjgpopen20X101041. https://doi.org/10.3399/bjgpopen20X101041 .

Assefa Y, Gilks CF, van de Pas R, Reid S, Gete DG, Van Damme W. Reimagining global health systems for the 21st century: lessons from the COVID-19 pandemic. BMJ Glob Health. 2021;6(4):e004882.

Loewenson R, Accoe K, Bajpai N, Buse K, Abi Deivanayagam T, London L, et al. Reclaiming comprehensive public health. BMJ Glob Health. 2020;5(9):e003886.

Rawaf S, Allen LN, Stigler FL, Kringos D, Quezada Yamamoto H, van Weel C, et al. Lessons on the COVID-19 pandemic, for and by primary care professionals worldwide. Eur J Gen Pract. 2020;26(1):129–33.

Gostin LO, Friedman EA. A retrospective and prospective analysis of the west African Ebola virus disease epidemic: robust national health systems at the foundation and an empowered WHO at the apex. Lancet. 2015;385(9980):1902–9.

Download references

Acknowledgements

Not applicable.

No funding was obtained for this study.

Author information

Authors and affiliations.

School of Public Health, the University of Queensland, Brisbane, Australia

Yibeltal Assefa, Charles F. Gilks, Simon Reid & Dereje Gedle Gete

Institute of Tropical Medicine, Antwerp, Belgium

Remco van de Pas & Wim Van Damme

You can also search for this author in PubMed   Google Scholar

Contributions

YA conceived the idea of the research, collected and analysed the data, and prepared the first and subsequent drafts. DG participated in data collection and analysis. CFG, SR, RVDP, DG and WVD provided comments during subsequent drafts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yibeltal Assefa .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Assefa, Y., Gilks, C.F., Reid, S. et al. Analysis of the COVID-19 pandemic: lessons towards a more effective response to public health emergencies. Global Health 18 , 10 (2022). https://doi.org/10.1186/s12992-022-00805-9

Download citation

Received : 04 August 2021

Accepted : 14 January 2022

Published : 04 February 2022

DOI : https://doi.org/10.1186/s12992-022-00805-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Heterogeneity

Globalization and Health

ISSN: 1744-8603

conclusion covid 19 essay

I Thought We’d Learned Nothing From the Pandemic. I Wasn’t Seeing the Full Picture

conclusion covid 19 essay

M y first home had a back door that opened to a concrete patio with a giant crack down the middle. When my sister and I played, I made sure to stay on the same side of the divide as her, just in case. The 1988 film The Land Before Time was one of the first movies I ever saw, and the image of the earth splintering into pieces planted its roots in my brain. I believed that, even in my own backyard, I could easily become the tiny Triceratops separated from her family, on the other side of the chasm, as everything crumbled into chaos.

Some 30 years later, I marvel at the eerie, unexpected ways that cartoonish nightmare came to life – not just for me and my family, but for all of us. The landscape was already covered in fissures well before COVID-19 made its way across the planet, but the pandemic applied pressure, and the cracks broke wide open, separating us from each other physically and ideologically. Under the weight of the crisis, we scattered and landed on such different patches of earth we could barely see each other’s faces, even when we squinted. We disagreed viciously with each other, about how to respond, but also about what was true.

Recently, someone asked me if we’ve learned anything from the pandemic, and my first thought was a flat no. Nothing. There was a time when I thought it would be the very thing to draw us together and catapult us – as a capital “S” Society – into a kinder future. It’s surreal to remember those early days when people rallied together, sewing masks for health care workers during critical shortages and gathering on balconies in cities from Dallas to New York City to clap and sing songs like “Yellow Submarine.” It felt like a giant lightning bolt shot across the sky, and for one breath, we all saw something that had been hidden in the dark – the inherent vulnerability in being human or maybe our inescapable connectedness .

More from TIME

Read More: The Family Time the Pandemic Stole

But it turns out, it was just a flash. The goodwill vanished as quickly as it appeared. A couple of years later, people feel lied to, abandoned, and all on their own. I’ve felt my own curiosity shrinking, my willingness to reach out waning , my ability to keep my hands open dwindling. I look out across the landscape and see selfishness and rage, burnt earth and so many dead bodies. Game over. We lost. And if we’ve already lost, why try?

Still, the question kept nagging me. I wondered, am I seeing the full picture? What happens when we focus not on the collective society but at one face, one story at a time? I’m not asking for a bow to minimize the suffering – a pretty flourish to put on top and make the whole thing “worth it.” Yuck. That’s not what we need. But I wondered about deep, quiet growth. The kind we feel in our bodies, relationships, homes, places of work, neighborhoods.

Like a walkie-talkie message sent to my allies on the ground, I posted a call on my Instagram. What do you see? What do you hear? What feels possible? Is there life out here? Sprouting up among the rubble? I heard human voices calling back – reports of life, personal and specific. I heard one story at a time – stories of grief and distrust, fury and disappointment. Also gratitude. Discovery. Determination.

Among the most prevalent were the stories of self-revelation. Almost as if machines were given the chance to live as humans, people described blossoming into fuller selves. They listened to their bodies’ cues, recognized their desires and comforts, tuned into their gut instincts, and honored the intuition they hadn’t realized belonged to them. Alex, a writer and fellow disabled parent, found the freedom to explore a fuller version of herself in the privacy the pandemic provided. “The way I dress, the way I love, and the way I carry myself have both shrunk and expanded,” she shared. “I don’t love myself very well with an audience.” Without the daily ritual of trying to pass as “normal” in public, Tamar, a queer mom in the Netherlands, realized she’s autistic. “I think the pandemic helped me to recognize the mask,” she wrote. “Not that unmasking is easy now. But at least I know it’s there.” In a time of widespread suffering that none of us could solve on our own, many tended to our internal wounds and misalignments, large and small, and found clarity.

Read More: A Tool for Staying Grounded in This Era of Constant Uncertainty

I wonder if this flourishing of self-awareness is at least partially responsible for the life alterations people pursued. The pandemic broke open our personal notions of work and pushed us to reevaluate things like time and money. Lucy, a disabled writer in the U.K., made the hard decision to leave her job as a journalist covering Westminster to write freelance about her beloved disability community. “This work feels important in a way nothing else has ever felt,” she wrote. “I don’t think I’d have realized this was what I should be doing without the pandemic.” And she wasn’t alone – many people changed jobs , moved, learned new skills and hobbies, became politically engaged.

Perhaps more than any other shifts, people described a significant reassessment of their relationships. They set boundaries, said no, had challenging conversations. They also reconnected, fell in love, and learned to trust. Jeanne, a quilter in Indiana, got to know relatives she wouldn’t have connected with if lockdowns hadn’t prompted weekly family Zooms. “We are all over the map as regards to our belief systems,” she emphasized, “but it is possible to love people you don’t see eye to eye with on every issue.” Anna, an anti-violence advocate in Maine, learned she could trust her new marriage: “Life was not a honeymoon. But we still chose to turn to each other with kindness and curiosity.” So many bonds forged and broken, strengthened and strained.

Instead of relying on default relationships or institutional structures, widespread recalibrations allowed for going off script and fortifying smaller communities. Mara from Idyllwild, Calif., described the tangible plan for care enacted in her town. “We started a mutual-aid group at the beginning of the pandemic,” she wrote, “and it grew so quickly before we knew it we were feeding 400 of the 4000 residents.” She didn’t pretend the conditions were ideal. In fact, she expressed immense frustration with our collective response to the pandemic. Even so, the local group rallied and continues to offer assistance to their community with help from donations and volunteers (many of whom were originally on the receiving end of support). “I’ve learned that people thrive when they feel their connection to others,” she wrote. Clare, a teacher from the U.K., voiced similar conviction as she described a giant scarf she’s woven out of ribbons, each representing a single person. The scarf is “a collection of stories, moments and wisdom we are sharing with each other,” she wrote. It now stretches well over 1,000 feet.

A few hours into reading the comments, I lay back on my bed, phone held against my chest. The room was quiet, but my internal world was lighting up with firefly flickers. What felt different? Surely part of it was receiving personal accounts of deep-rooted growth. And also, there was something to the mere act of asking and listening. Maybe it connected me to humans before battle cries. Maybe it was the chance to be in conversation with others who were also trying to understand – what is happening to us? Underneath it all, an undeniable thread remained; I saw people peering into the mess and narrating their findings onto the shared frequency. Every comment was like a flare into the sky. I’m here! And if the sky is full of flares, we aren’t alone.

I recognized my own pandemic discoveries – some minor, others massive. Like washing off thick eyeliner and mascara every night is more effort than it’s worth; I can transform the mundane into the magical with a bedsheet, a movie projector, and twinkle lights; my paralyzed body can mother an infant in ways I’d never seen modeled for me. I remembered disappointing, bewildering conversations within my own family of origin and our imperfect attempts to remain close while also seeing things so differently. I realized that every time I get the weekly invite to my virtual “Find the Mumsies” call, with a tiny group of moms living hundreds of miles apart, I’m being welcomed into a pocket of unexpected community. Even though we’ve never been in one room all together, I’ve felt an uncommon kind of solace in their now-familiar faces.

Hope is a slippery thing. I desperately want to hold onto it, but everywhere I look there are real, weighty reasons to despair. The pandemic marks a stretch on the timeline that tangles with a teetering democracy, a deteriorating planet , the loss of human rights that once felt unshakable . When the world is falling apart Land Before Time style, it can feel trite, sniffing out the beauty – useless, firing off flares to anyone looking for signs of life. But, while I’m under no delusions that if we just keep trudging forward we’ll find our own oasis of waterfalls and grassy meadows glistening in the sunshine beneath a heavenly chorus, I wonder if trivializing small acts of beauty, connection, and hope actually cuts us off from resources essential to our survival. The group of abandoned dinosaurs were keeping each other alive and making each other laugh well before they made it to their fantasy ending.

Read More: How Ice Cream Became My Own Personal Act of Resistance

After the monarch butterfly went on the endangered-species list, my friend and fellow writer Hannah Soyer sent me wildflower seeds to plant in my yard. A simple act of big hope – that I will actually plant them, that they will grow, that a monarch butterfly will receive nourishment from whatever blossoms are able to push their way through the dirt. There are so many ways that could fail. But maybe the outcome wasn’t exactly the point. Maybe hope is the dogged insistence – the stubborn defiance – to continue cultivating moments of beauty regardless. There is value in the planting apart from the harvest.

I can’t point out a single collective lesson from the pandemic. It’s hard to see any great “we.” Still, I see the faces in my moms’ group, making pancakes for their kids and popping on between strings of meetings while we try to figure out how to raise these small people in this chaotic world. I think of my friends on Instagram tending to the selves they discovered when no one was watching and the scarf of ribbons stretching the length of more than three football fields. I remember my family of three, holding hands on the way up the ramp to the library. These bits of growth and rings of support might not be loud or right on the surface, but that’s not the same thing as nothing. If we only cared about the bottom-line defeats or sweeping successes of the big picture, we’d never plant flowers at all.

More Must-Reads from TIME

  • Breaking Down the 2024 Election Calendar
  • Heman Bekele Is TIME’s 2024 Kid of the Year
  • The Reintroduction of Kamala Harris
  • What a $129 Frying Pan Says About America’s Eating Habits
  • A Battle Over Fertility Law in China
  • The 1 Heart-Health Habit You Should Start When You’re Young
  • Cuddling Might Help You Get Better Sleep
  • The 50 Best Romance Novels to Read Right Now

Contact us at [email protected]

  • Fact sheets
  • Facts in pictures
  • Publications
  • Questions and answers
  • Tools and toolkits
  • Endometriosis
  • Excessive heat
  • Mental disorders
  • Polycystic ovary syndrome
  • All countries
  • Eastern Mediterranean
  • South-East Asia
  • Western Pacific
  • Data by country
  • Country presence 
  • Country strengthening 
  • Country cooperation strategies 
  • News releases
  • Feature stories
  • Press conferences
  • Commentaries
  • Photo library
  • Afghanistan
  • Cholera 
  • Coronavirus disease (COVID-19)
  • Greater Horn of Africa
  • Israel and occupied Palestinian territory
  • Disease Outbreak News
  • Situation reports
  • Weekly Epidemiological Record
  • Surveillance
  • Health emergency appeal
  • International Health Regulations
  • Independent Oversight and Advisory Committee
  • Classifications
  • Data collections
  • Global Health Estimates
  • Mortality Database
  • Sustainable Development Goals
  • Health Inequality Monitor
  • Global Progress
  • World Health Statistics
  • Partnerships
  • Committees and advisory groups
  • Collaborating centres
  • Technical teams
  • Organizational structure
  • Initiatives
  • General Programme of Work
  • WHO Academy
  • Investment in WHO
  • WHO Foundation
  • External audit
  • Financial statements
  • Internal audit and investigations 
  • Programme Budget
  • Results reports
  • Governing bodies
  • World Health Assembly
  • Executive Board
  • Member States Portal

Impact of COVID-19 on people's livelihoods, their health and our food systems

Joint statement by ilo, fao, ifad and who.

The COVID-19 pandemic has led to a dramatic loss of human life worldwide and presents an unprecedented challenge to public health, food systems and the world of work. The economic and social disruption caused by the pandemic is devastating: tens of millions of people are at risk of falling into extreme poverty, while the number of undernourished people, currently estimated at nearly 690 million, could increase by up to 132 million by the end of the year.

Millions of enterprises face an existential threat. Nearly half of the world’s 3.3 billion global workforce are at risk of losing their livelihoods. Informal economy workers are particularly vulnerable because the majority lack social protection and access to quality health care and have lost access to productive assets. Without the means to earn an income during lockdowns, many are unable to feed themselves and their families. For most, no income means no food, or, at best, less food and less nutritious food. 

The pandemic has been affecting the entire food system and has laid bare its fragility. Border closures, trade restrictions and confinement measures have been preventing farmers from accessing markets, including for buying inputs and selling their produce, and agricultural workers from harvesting crops, thus disrupting domestic and international food supply chains and reducing access to healthy, safe and diverse diets. The pandemic has decimated jobs and placed millions of livelihoods at risk. As breadwinners lose jobs, fall ill and die, the food security and nutrition of millions of women and men are under threat, with those in low-income countries, particularly the most marginalized populations, which include small-scale farmers and indigenous peoples, being hardest hit.

Millions of agricultural workers – waged and self-employed – while feeding the world, regularly face high levels of working poverty, malnutrition and poor health, and suffer from a lack of safety and labour protection as well as other types of abuse. With low and irregular incomes and a lack of social support, many of them are spurred to continue working, often in unsafe conditions, thus exposing themselves and their families to additional risks. Further, when experiencing income losses, they may resort to negative coping strategies, such as distress sale of assets, predatory loans or child labour. Migrant agricultural workers are particularly vulnerable, because they face risks in their transport, working and living conditions and struggle to access support measures put in place by governments. Guaranteeing the safety and health of all agri-food workers – from primary producers to those involved in food processing, transport and retail, including street food vendors – as well as better incomes and protection, will be critical to saving lives and protecting public health, people’s livelihoods and food security.

In the COVID-19 crisis food security, public health, and employment and labour issues, in particular workers’ health and safety, converge. Adhering to workplace safety and health practices and ensuring access to decent work and the protection of labour rights in all industries will be crucial in addressing the human dimension of the crisis. Immediate and purposeful action to save lives and livelihoods should include extending social protection towards universal health coverage and income support for those most affected. These include workers in the informal economy and in poorly protected and low-paid jobs, including youth, older workers, and migrants. Particular attention must be paid to the situation of women, who are over-represented in low-paid jobs and care roles. Different forms of support are key, including cash transfers, child allowances and healthy school meals, shelter and food relief initiatives, support for employment retention and recovery, and financial relief for businesses, including micro, small and medium-sized enterprises. In designing and implementing such measures it is essential that governments work closely with employers and workers.

Countries dealing with existing humanitarian crises or emergencies are particularly exposed to the effects of COVID-19. Responding swiftly to the pandemic, while ensuring that humanitarian and recovery assistance reaches those most in need, is critical.

Now is the time for global solidarity and support, especially with the most vulnerable in our societies, particularly in the emerging and developing world. Only together can we overcome the intertwined health and social and economic impacts of the pandemic and prevent its escalation into a protracted humanitarian and food security catastrophe, with the potential loss of already achieved development gains.

We must recognize this opportunity to build back better, as noted in the Policy Brief issued by the United Nations Secretary-General. We are committed to pooling our expertise and experience to support countries in their crisis response measures and efforts to achieve the Sustainable Development Goals. We need to develop long-term sustainable strategies to address the challenges facing the health and agri-food sectors. Priority should be given to addressing underlying food security and malnutrition challenges, tackling rural poverty, in particular through more and better jobs in the rural economy, extending social protection to all, facilitating safe migration pathways and promoting the formalization of the informal economy.

We must rethink the future of our environment and tackle climate change and environmental degradation with ambition and urgency. Only then can we protect the health, livelihoods, food security and nutrition of all people, and ensure that our ‘new normal’ is a better one.

Media Contacts

Kimberly Chriscaden

Communications Officer World Health Organization

Nutrition and Food Safety (NFS) and COVID-19

The complexity of managing COVID-19: How important is good governance?

  • Download the essay

Subscribe to Global Connection

Alaka m. basu , amb alaka m. basu professor, department of global development - cornell university, senior fellow - united nations foundation kaushik basu , and kaushik basu nonresident senior fellow - global economy and development jose maria u. tapia jmut jose maria u. tapia student - cornell university.

November 17, 2020

  • 13 min read

This essay is part of “ Reimagining the global economy: Building back better in a post-COVID-19 world ,” a collection of 12 essays presenting new ideas to guide policies and shape debates in a post-COVID-19 world.

The COVID-19 pandemic has exposed the inadequacy of public health systems worldwide, casting a shadow that we could not have imagined even a year ago. As the fog of confusion lifts and we begin to understand the rudiments of how the virus behaves, the end of the pandemic is nowhere in sight. The number of cases and the deaths continue to rise. The latter breached the 1 million mark a few weeks ago and it looks likely now that, in terms of severity, this pandemic will surpass the Asian Flu of 1957-58 and the Hong Kong Flu of 1968-69.

Moreover, a parallel problem may well exceed the direct death toll from the virus. We are referring to the growing economic crises globally, and the prospect that these may hit emerging economies especially hard.

The economic fall-out is not entirely the direct outcome of the COVID-19 pandemic but a result of how we have responded to it—what measures governments took and how ordinary people, workers, and firms reacted to the crisis. The government activism to contain the virus that we saw this time exceeds that in previous such crises, which may have dampened the spread of the COVID-19 but has extracted a toll from the economy.

This essay takes stock of the policies adopted by governments in emerging economies, and what effect these governance strategies may have had, and then speculates about what the future is likely to look like and what we may do here on.

Nations that build walls to keep out goods, people and talent will get out-competed by other nations in the product market.

It is becoming clear that the scramble among several emerging economies to imitate and outdo European and North American countries was a mistake. We get a glimpse of this by considering two nations continents apart, the economies of which have been among the hardest hit in the world, namely, Peru and India. During the second quarter of 2020, Peru saw an annual growth of -30.2 percent and India -23.9 percent. From the global Q2 data that have emerged thus far, Peru and India are among the four slowest growing economies in the world. Along with U.K and Tunisia these are the only nations that lost more than 20 percent of their GDP. 1

COVID-19-related mortality statistics, and, in particular, the Crude Mortality Rate (CMR), however imperfect, are the most telling indicator of the comparative scale of the pandemic in different countries. At first glance, from the end of October 2020, Peru, with 1039 COVID-19 deaths per million population looks bad by any standard and much worse than India with 88. Peru’s CMR is currently among the highest reported globally.

However, both Peru and India need to be placed in regional perspective. For reasons that are likely to do with the history of past diseases, there are striking regional differences in the lethality of the virus (Figure 11.1). South America is worse hit than any other world region, and Asia and Africa seem to have got it relatively lightly, in contrast to Europe and America. The stark regional difference cries out for more epidemiological analysis. But even as we await that, these are differences that cannot be ignored.

11.1

To understand the effect of policy interventions, it is therefore important to look at how these countries fare within their own regions, which have had similar histories of illnesses and viruses (Figure 11.2). Both Peru and India do much worse than the neighbors with whom they largely share their social, economic, ecological and demographic features. Peru’s COVID-19 mortality rate per million population, or CMR, of 1039 is ahead of the second highest, Brazil at 749, and almost twice that of Argentina at 679.

11.2

Similarly, India at 88 compares well with Europe and the U.S., as does virtually all of Asia and Africa, but is doing much worse than its neighbors, with the second worst country in the region, Afghanistan, experiencing less than half the death rate of India.

The official Indian statement that up to 78,000 deaths 2 were averted by the lockdown has been criticized 3 for its assumptions. A more reasonable exercise is to estimate the excess deaths experienced by a country that breaks away from the pattern of its regional neighbors. So, for example, if India had experienced Afghanistan’s COVID-19 mortality rate, it would by now have had 54,112 deaths. And if it had the rate reported by Bangladesh, it would have had 49,950 deaths from COVID-19 today. In other words, more than half its current toll of some 122,099 COVID-19 deaths would have been avoided if it had experienced the same virus hit as its neighbors.

What might explain this outlier experience of COVID-19 CMRs and economic downslide in India and Peru? If the regional background conditions are broadly similar, one is left to ask if it is in fact the policy response that differed markedly and might account for these relatively poor outcomes.

Peru and India have performed poorly in terms of GDP growth rate in Q2 2020 among the countries displayed in Table 2, and given that both these countries are often treated as case studies of strong governance, this draws attention to the fact that there may be a dissonance between strong governance and good governance.

The turnaround for India has been especially surprising, given that until a few years ago it was among the three fastest growing economies in the world. The slowdown began in 2016, though the sharp downturn, sharper than virtually all other countries, occurred after the lockdown.

On the COVID-19 policy front, both India and Peru have become known for what the Oxford University’s COVID Policy Tracker 4 calls the “stringency” of the government’s response to the epidemic. At 8 pm on March 24, 2020, the Indian government announced, with four hours’ notice, a complete nationwide shutdown. Virtually all movement outside the perimeter of one’s home was officially sought to be brought to a standstill. Naturally, as described in several papers, such as that of Ray and Subramanian, 5 this meant that most economic life also came to a sudden standstill, which in turn meant that hundreds of millions of workers in the informal, as well as more marginally formal sectors, lost their livelihoods.

In addition, tens of millions of these workers, being migrant workers in places far-flung from their original homes, also lost their temporary homes and their savings with these lost livelihoods, so that the only safe space that beckoned them was their place of origin in small towns and villages often hundreds of miles away from their places of work.

After a few weeks of precarious living in their migrant destinations, they set off, on foot since trains and buses had been stopped, for these towns and villages, creating a “lockdown and scatter” that spread the virus from the city to the town and the town to the village. Indeed, “lockdown” is a bit of a misnomer for what happened in India, since over 20 million people did exactly the opposite of what one does in a lockdown. Thus India had a strange combination of lockdown some and scatter the rest, like in no other country. They spilled out and scattered in ways they would otherwise not do. It is not surprising that the infection, which was marginally present in rural areas (23 percent in April), now makes up some 54 percent of all cases in India. 6

In Peru too, the lockdown was sudden, nationwide, long drawn out and stringent. 7 Jobs were lost, financial aid was difficult to disburse, migrant workers were forced to return home, and the virus has now spread to all parts of the country with death rates from it surpassing almost every other part of the world.

As an aside, to think about ways of implementing lockdowns that are less stringent and geographically as well as functionally less total, an example from yet another continent is instructive. Ethiopia, with a COVID-19 death rate of 13 per million population seems to have bettered the already relatively low African rate of 31 in Table 1. 8

We hope that human beings will emerge from this crisis more aware of the problems of sustainability.

The way forward

We next move from the immediate crisis to the medium term. Where is the world headed and how should we deal with the new world? Arguably, that two sectors that will emerge larger and stronger in the post-pandemic world are: digital technology and outsourcing, and healthcare and pharmaceuticals.

The last 9 months of the pandemic have been a huge training ground for people in the use of digital technology—Zoom, WebEx, digital finance, and many others. This learning-by-doing exercise is likely to give a big boost to outsourcing, which has the potential to help countries like India, the Philippines, and South Africa.

Globalization may see a short-run retreat but, we believe, it will come back with a vengeance. Nations that build walls to keep out goods, people and talent will get out-competed by other nations in the product market. This realization will make most countries reverse their knee-jerk anti-globalization; and the ones that do not will cease to be important global players. Either way, globalization will be back on track and with a much greater amount of outsourcing.

To return, more critically this time, to our earlier aside on Ethiopia, its historical and contemporary record on tampering with internet connectivity 9 in an attempt to muzzle inter-ethnic tensions and political dissent will not serve it well in such a post-pandemic scenario. This is a useful reminder for all emerging market economies.

We hope that human beings will emerge from this crisis more aware of the problems of sustainability. This could divert some demand from luxury goods to better health, and what is best described as “creative consumption”: art, music, and culture. 10 The former will mean much larger healthcare and pharmaceutical sectors.

But to take advantage of these new opportunities, nations will need to navigate the current predicament so that they have a viable economy once the pandemic passes. Thus it is important to be able to control the pandemic while keeping the economy open. There is some emerging literature 11 on this, but much more is needed. This is a governance challenge of a kind rarely faced, because the pandemic has disrupted normal markets and there is need, at least in the short run, for governments to step in to fill the caveat.

Emerging economies will have to devise novel governance strategies for doing this double duty of tamping down on new infections without strident controls on economic behavior and without blindly imitating Europe and America.

Here is an example. One interesting opportunity amidst this chaos is to tap into the “resource” of those who have already had COVID-19 and are immune, even if only in the short-term—we still have no definitive evidence on the length of acquired immunity. These people can be offered a high salary to work in sectors that require physical interaction with others. This will help keep supply chains unbroken. Normally, the market would have on its own caused such a salary increase but in this case, the main benefit of marshaling this labor force is on the aggregate economy and GDP and therefore is a classic case of positive externality, which the free market does not adequately reward. It is more a challenge of governance. As with most economic policy, this will need careful research and design before being implemented. We have to be aware that a policy like this will come with its risk of bribery and corruption. There is also the moral hazard challenge of poor people choosing to get COVID-19 in order to qualify for these special jobs. Safeguards will be needed against these risks. But we believe that any government that succeeds in implementing an intelligently-designed intervention to draw on this huge, under-utilized resource can have a big, positive impact on the economy 12 .

This is just one idea. We must innovate in different ways to survive the crisis and then have the ability to navigate the new world that will emerge, hopefully in the not too distant future.

Related Content

Emiliana Vegas, Rebecca Winthrop

Homi Kharas, John W. McArthur

Anthony F. Pipa, Max Bouchet

Note: We are grateful for financial support from Cornell University’s Hatfield Fund for the research associated with this paper. We also wish to express our gratitude to Homi Kharas for many suggestions and David Batcheck for generous editorial help.

  • “GDP Annual Growth Rate – Forecast 2020-2022,” Trading Economics, https://tradingeconomics.com/forecast/gdp-annual-growth-rate.
  • “Government Cites Various Statistical Models, Says Averted Between 1.4 Million-2.9 Million Cases Due To Lockdown,” Business World, May 23, 2020, www.businessworld.in/article/Government-Cites-Various-Statistical-Models-Says-Averted-Between-1-4-million-2-9-million-Cases-Due-To-Lockdown/23-05-2020-193002/.
  • Suvrat Raju, “Did the Indian lockdown avert deaths?” medRxiv , July 5, 2020, https://europepmc.org/article/ppr/ppr183813#A1.
  • “COVID Policy Tracker,” Oxford University, https://github.com/OxCGRT/covid-policy-tracker t.
  • Debraj Ray and S. Subramanian, “India’s Lockdown: An Interim Report,” NBER Working Paper, May 2020, https://www.nber.org/papers/w27282.
  • Gopika Gopakumar and Shayan Ghosh, “Rural recovery could slow down as cases rise, says Ghosh,” Mint, August 19, 2020, https://www.livemint.com/news/india/rural-recovery-could-slow-down-as-cases-rise-says-ghosh-11597801644015.html.
  • Pierina Pighi Bel and Jake Horton, “Coronavirus: What’s happening in Peru?,” BBC, July 9, 2020, https://www.bbc.com/news/world-latin-america-53150808.
  • “No lockdown, few ventilators, but Ethiopia is beating Covid-19,” Financial Times, May 27, 2020, https://www.ft.com/content/7c6327ca-a00b-11ea-b65d-489c67b0d85d.
  • Cara Anna, “Ethiopia enters 3rd week of internet shutdown after unrest,” Washington Post, July 14, 2020, https://www.washingtonpost.com/world/africa/ethiopia-enters-3rd-week-of-internet-shutdown-after-unrest/2020/07/14/4699c400-c5d6-11ea-a825-8722004e4150_story.html.
  • Patrick Kabanda, The Creative Wealth of Nations: Can the Arts Advance Development? (Cambridge: Cambridge University Press, 2018).
  • Guanlin Li et al, “Disease-dependent interaction policies to support health and economic outcomes during the COVID-19 epidemic,” medRxiv, August 2020, https://www.medrxiv.org/content/10.1101/2020.08.24.20180752v3.
  • For helpful discussion concerning this idea, we are grateful to Turab Hussain, Daksh Walia and Mehr-un-Nisa, during a seminar of South Asian Economics Students’ Meet (SAESM).

Global Economy and Development

Sam Boocker, David Wessel

August 23, 2024

Refet Gürkaynak

August 22, 2024

National Academies Press: OpenBook

Long-Term Health Effects of COVID-19: Disability and Function Following SARS-CoV-2 Infection (2024)

Chapter: 6 overall conclusions.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

6 Overall Conclusions This chapter presents nine conclusions derived by the committee from evidence presented throughout the report. This chapter does not include ref- erences. Citations to support the text and conclusions herein are provided in previous chapters of the report. DIAGNOSIS OF LONG COVID Long COVID is associated with a wide range of new or worsening health conditions and encompasses more than 200 symptoms involving nearly every organ system. There currently are no consensus-based diagnos- tic criteria for the condition; criteria for diagnosis are evolving as experi- ence and research findings develop. Diagnosis of Long COVID is generally based on a known or presumed history of acute SARS-CoV-2 infection (as indicated by a positive viral test or patient self-report; as of this writing, no diagnostic test for Long COVID is available), the presence of Long COVID health effects and symptoms, and consideration of other conditions and etiologies that could be causing the symptoms. Testing to diagnose acute SARS-CoV-2 infection, as well as testing capacity and behaviors, has changed dramatically over the course of the COVID-19 pandemic. Testing was constrained during the early phase of the pandemic, although it subsequently became increasingly available, and the introduction of at-home testing meant that many people may not have reported their positive results to health care systems. As a result of these two drivers, many individuals infected with SARS-CoV-2 never received formal 215

216 LONG-TERM HEALTH EFFECTS OF COVID-19 documentation of their diagnosis. Sole reliance on a documented history of SARS-CoV-2 infection when diagnosing Long COVID will miss these indi- viduals. Therefore, the presence of signs and symptoms and self-reported prior infection are generally considered sufficient to establish a diagnosis of SARS-CoV-2 infection. Continued research on and discussion of Long COVID will help inform a case definition and standardized diagnosis. Based on its review of the literature, the committee reached the follow- ing conclusion: 1. Long COVID is a complex chronic condition caused by SARS-CoV-2 infection that affects multiple body systems. Because of wide variability in testing practices over the course of the pandemic, many people expe- riencing Long COVID have not received a formal diagnosis of prior SARS-CoV-2 infection. A positive test for SARS-CoV-2 is not necessary to consider a diagnosis of Long COVID. EPIDEMIOLOGY Long COVID can impact people across the lifespan, from children to older adults, as well as across sex, gender, racial, ethnic, and other demo- graphic groups. Women are twice as likely as men to experience Long COVID. Population surveys suggest that in 2022 the overall prevalence of Long COVID was around 3.4 percent in U.S. adults and 0.5 percent in children. Estimates of the prevalence of specific long-term health effects of SARS-CoV-2 vary in the literature. This variation reflects the dynamic nature of the pandemic itself, as the virus has evolved and spawned many variants and subvariants (likely with different propensities to cause Long COVID), as well as the introduction of vaccines and treatments for acute infection (e.g., antivirals, steroids), both of which have been shown to reduce the risk of long-term health effects. Variation in incidence and prevalence esti- mates also stem from the heterogeneity of study designs, including choice of control groups, methods used to account for the effect of baseline health, specification of outcomes, and other methodological differences. In addition, the broad multisystem nature of Long COVID and the fact that the associated health effects are expressed differently by age group and sex and by baseline health compound the challenge of identifying and quan- tifying affected populations. Symptoms of SARS-CoV-2 infection range in severity from mild to severe, and the literature suggests that the severity of acute SARS-CoV-2 infection is a risk factor for Long COVID. For example, a large Scottish population-based study found that 5 percent of those with mild infection had not recovered at least 6 months following infection, compared with 16 percent of those who required hospitalization—a ratio of approximately 1:3.

OVERALL CONCLUSIONS 217 Based on its review of the literature, the committee reached the follow- ing conclusion: 2. The risk of Long COVID increases with the severity of acute infec- tion. By the committee’s best estimate, people whose infection was suf- ficiently severe to necessitate hospitalization are 2–3 times more likely to experience Long COVID than are those who were not hospitalized, and among those who were hospitalized, individuals requiring life support in the intensive care unit may be twice as likely to experience Long COVID. However, people with mild disease can also develop Long COVID, and given the much higher number of people with mild versus severe disease, they make up the great majority of people with Long COVID. HEALTH EFFECTS Long COVID is associated with hundreds of symptoms and new or worsening health effects that manifest in many different body systems. In keeping with the three domains of functioning in the International Clas- sification of Functioning, Disability and Health model of disability, health effects experienced in Long COVID may manifest as impairments in body structures and physical and psychological functions, with resulting activity limitations and restrictions on participation. Evidence on clustering of the post-acute and long-term health effects of SARS-CoV-2 infection remains inconsistent across studies. Consensus is needed on terms, definitions, and methodological approaches for generating better-quality and more consis- tent evidence. Based on its review of the literature, the committee reached the follow- ing conclusion: 3. Long COVID is associated with a wide range of new or worsening health conditions impacting multiple organ systems. Long COVID can cause more than 200 symptoms and affects each person differently. Attempts to cluster symptoms have yielded heterogeneous results. FUNCTIONAL IMPACT AND RISK FACTORS Some of the symptoms and health effects associated with Long COVID can be severe enough to interfere with an individual’s day-to-day functioning, including participation in work and school activities. Functional disability associated with Long COVID has been characterized as the inability to return to work, poor quality of life, diminished ability to perform activities of daily living, decreased physical and cognitive function, and overall disability.

218 LONG-TERM HEALTH EFFECTS OF COVID-19 The severity of acute COVID-19 is a major risk factor for poor functional outcomes, but even people with mild initial illness can experience long-term functional impairments. Increased number and severity of long-term symp- toms correlate with decreased quality of life, physical functioning, and ability to work or perform in school. Other risk factors for poor functional out- comes include female sex, lack of vaccination against SARS-CoV-2, baseline disability or comorbidities, and smoking. There is some overlap between SSA’s current Listing of Impairments (Listings) and health effects associated with Long COVID, such as impaired lung and heart function. However, it is likely that most individuals with Long COVID applying for Social Security disability benefits will do so based on health effects not covered in the Listings. Three frequently reported health effects that can significantly interfere with the ability to perform work or school activities and may not be captured in the SSA Listings are chronic fatigue and post-exertional malaise, post-COVID-19 cognitive impairment, and autonomic dysfunction, all of which can be difficult to assess clinically in terms of their severity and effects on a person’s functioning. Based on its review of the literature, the committee reached the follow- ing conclusion: 4. Long COVID can result in the inability to return to work (or school for children and adolescents), poor quality of life, diminished ability to perform activities of daily living, and decreased physical and cognitive function for 6 months to 2 years or longer after the resolution of acute infection with SARS-CoV-2. Increased number and severity of long- term health effects correlates with decreased quality of life, physical and mental functioning, and ability to participate in work and school. Health effects that may not be captured in SSA’s Listing of Impairments yet may significantly affect an individual’s ability to participate in work or school include, but are not limited to, post-exertional malaise and chronic fatigue, post-COVID-19 cognitive impairment, and autonomic dysfunction. LONG COVID IN CHILDREN AND ADOLESCENTS While there are various definitions of children, adolescents, and young people, for the purposes of this report, “children” or “pediatrics” refers to the entire pediatric age range and “adolescents” to children at the older end of the spectrum (i.e., ages ~11 to 18 years). Even though most children experience mild acute COVID-19 illness, they can experience Long COVID regardless of the severity of their acute infection. As with adults, they may experience health effects across many body systems. Commonly reported symptoms include fatigue, weakness, headache, sleep disturbance, muscle

OVERALL CONCLUSIONS 219 and joint pain, respiratory problems, palpitations, altered sense of smell or taste, dizziness, and dysautonomia. Although pediatric presentations and intervention options may overlap with those in adults—particularly among adolescents, who may be more likely than children to mimic the adult presentation and trajectory—pediatric management of Long COVID entails specific considerations related to developmental age and/or dis- abilities and history gathering. In general, children have fewer preexisting chronic health conditions compared with adults; thus, Long COVID may represent a substantial change from their baseline, particularly for those who were previously healthy. Limited data are available on long-term outcomes in children. Some youth with persistent symptoms experience difficulties that affect their quality of life and result in increased school absences, as well as decreased participation and performance in school, sports, and other activities. Risk factors for the development of Long COVID include acute-phase hospi- talization, preexisting comorbidity, and infection with pre-Omicron vari- ants. Most children with Long COVID recover slowly over time, but not all. In one prospective cohort study of 1,243 children (ages 4–10) with Long COVID, for example, 48 percent remained symptomatic at 6 months, 13 percent at 12 months, and 5 percent at 18 months after infection. Impor- tantly, severity of symptoms and functional impairment from Long COVID symptoms were not correlated with traditional clinical testing (e.g., lung ultrasound, standard systolic and diastolic function on echocardiogram). It is important to note that in pediatrics, because of typical develop- ment, the baseline for performance of skills is constantly changing, espe- cially among young children. This can make deviations in their performance during Long COVID challenging to assess, and there may be a delay in recognition of any deviations (e.g., lack of developing a skill at the appro- priate age). Additionally, the duration of symptoms (e.g., 1 or 3 months) can feel very different to and have a greater impact on children compared with adults. Currently, there is a dearth of prospective and cross-sectional studies on the prevalence, risk factors, and time course and pattern of Long COVID in children. More research is needed to identify the long-term functional implications of Long COVID in children, because information from adult studies may not be directly applicable to the pediatric population. Based on its review of the literature, the committee reached the follow- ing conclusion: 5. Although the large majority of children recover fully from SARS-CoV-2 infection, some develop Long COVID and experience persistent or intermittent symptoms that can reduce their quality of life and result in increased school absences as well as decreased participation and per- formance in school, sports, and other activities. Overall, the trajectory

220 LONG-TERM HEALTH EFFECTS OF COVID-19 for recovery is better among children compared with adults. More research is needed to understand the long-term functional implications of Long COVID in children, as information from adult studies may not be directly applicable. DISEASE MANAGEMENT Currently there are no Food and Drug Administration (FDA)–approved drugs or disease-modifying treatments for Long COVID. As with other complex multisystem conditions, management of Long COVID relies on techniques for controlling symptoms and improving functional ability, such as pacing (i.e., balancing periods of activity and rest in daily life), mobility support, social support, diet modulation, pharmacological treatment of secondary health effects, cognitive-behavioral therapy, and rehabilitation. Management often requires a multidisciplinary team. Because of the mul- tisystem nature of the condition, different approaches may be needed to address the variety of clinical presentations and environmental factors (e.g., living situation, work requirements, family support) among individuals. Numerous randomized controlled trials are currently being undertaken to determine the efficacy of a number of identified pharmacological agents; however, limited data have been published, and trials are yet to be finalized. Based on its review of the literature, the committee reached the follow- ing conclusion: 6. There currently is no curative treatment for Long COVID itself. Man- agement of the condition is based on current knowledge about treating the associated health effects and other sequelae. As with other complex multisystem chronic conditions, treatment focuses on symptom man- agement and optimization of function and quality of life. DISEASE COURSE AND PROGNOSIS Recovery from Long COVID varies among individuals, and data on recovery trajectories are rapidly evolving. Initial data suggest that peo- ple with persistent Long COVID symptoms generally improve over time, although preliminary studies suggest that recovery can plateau 6–12 months after acute infection. Studies have shown that only 18–22 percent of those who have persistent symptoms at 5–6 months following infection have fully recovered by 1 year. Among those who do not improve, most remain stable, but some worsen. More information on recovery trajectories at 1 year or longer may become available in the next few years. Rehabilitation and symptom management, including pacing, may improve function in some people with Long COVID, regardless of the severity of disease or duration

OVERALL CONCLUSIONS 221 of symptoms, although the benefits are greater for those who are younger and who have had Long COVID for a shorter period of time. Based on its review of the literature, the committee reached the follow- ing conclusion: 7. Recovery from Long COVID varies among individuals, and data on recovery trajectories are rapidly evolving. There is some evidence that many people with persistent Long COVID symptoms at 3 months following acute infection, including children and adolescents, have improved by 12 months. Data for durations longer than 12 months are limited, but preliminary data suggest that recovery may plateau or progress at a slower rate after 12 months. HEALTH EQUITY The burden of seeking care and finding adequate services for Long COVID is challenging and can impact the potential for recovery. Patients with Long COVID may encounter skepticism about their symptoms when they present in medical settings, which discourages care seeking. This is particularly true for individuals disadvantaged by their social or economic status, geographic location, or environment, and can result in preventable disparities in the burden of disease and opportunities to achieve optimal health. Disadvantaged groups include members of some racial and ethnic minorities, people with disabilities, women, LGBTQI1 (lesbian, gay, bisex- ual, transgender, queer, intersex, or other) individuals, people with limited English proficiency, and others. Individuals with Long COVID have increased health care utilization and financial burden, which may be exacerbated if they are unable to work to gain income and or receive health insurance coverage. Members of dis- advantaged groups, especially early in the pandemic, were more likely to contract SARS-CoV-2, more likely to be hospitalized with acute COVID-19, more likely to have adverse clinical outcomes, and less likely to be vac- cinated, potentially increasing their risk of developing Long COVID. In addition, these groups are more likely to be uninsured or underinsured. Even for those with insurance coverage, some of the services that have been shown to improve function may not be covered by their benefits. Moreover, the availability of specialized Long COVID services is limited, and capacity does not match the demand for rehabilitation specialists. Limited transpor- tation, distance from clinics, and the inability to take time away from work or school are known barriers to care. The availability issue is particularly problematic for individuals living in medically underserved areas. Information about COVID is rapidly evolving, and this dynamic nature of the science may contribute to some patient hesitancy regarding

222 LONG-TERM HEALTH EFFECTS OF COVID-19 prophylactic and therapeutic management for acute infection or Long COVID. Low levels of health literacy may also place some individuals at increased risk for misinformation, which may prevent them from fully tak- ing advantage of health care resources to protect and improve their health. Low health literacy may also impact individual self-management of the symptoms and conditions associated with Long COVID. Based on its review of the literature, the committee reached the follow- ing conclusion: 8. Social determinants of health, such as socioeconomic status, geographic location, health literacy, and race and ethnicity, affect access to health care. With respect to acute SARS-CoV-2 infection and Long COVID, adverse social determinants of health have contributed to disparities in access to SARS-CoV-2 testing; vaccination; and therapeutics, includ- ing treatments for acute infection and specialized rehabilitation clinics for Long COVID. In addition, the demand for specialty care exceeds capacity, resulting in waitlists for the receipt of services. SIMILAR CHRONIC CONDITIONS Long COVID shares many features with other complex multisystem conditions, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), fibromyalgia, and postural orthostatic tachycardia syndrome (POTS). The mechanism of action for infection-associated chronic illnesses remains unclear, and further investigation is needed. Current theories regarding potential mechanisms of action include viral persistence, immune dysregulation (including cytokine dysregulation or mast cell activation), neurological disturbances (e.g., neuroinflammation), cardiovascular damage (e.g., endothelial dysfunction, coagulation issues, orthostatic intolerance), gastrointestinal dysfunction (e.g., secondary to gut microbiome dysbiosis), metabolic issues (energy insufficiency, reactive oxygen species production, mitochrondrial dysfunction), and genetic variations. Currently, there are no specific laboratory-based diagnostic tests for Long COVID or ME/CFS, and diagnosis involves consideration of other potential causes of the symptoms. In general, Long COVID (especially that which does not meet criteria for ME/CFS) has a better prognosis than ME/ CFS. Some manifestations of Long COVID are similar to those of ME/CFS, and like ME/CFS, Long COVID appears to be a chronic illness, with few patients achieving full remission. Studies comparing Long COVID and ME/ CFS have several limitations, however. Because Long COVID is a new dis- ease, study participants are usually newly diagnosed, while ME/CFS study participants often have had the condition for longer and so are less likely to improve. Moreover, the definition of ME/CFS requires that symptoms

OVERALL CONCLUSIONS 223 be ongoing for 6 months or more, whereas the duration criteria for Long COVID vary in the literature from 2 to 6 months, making the two condi- tions difficult to compare. Based on its review of the literature, the committee reached the follow- ing conclusion: 9. Complex, infection-associated chronic conditions affecting multiple body systems are not new, and Long COVID shares many features with such conditions as myalgic encephalomyelitis/chronic fatigue syn- drome, fibromyalgia, and postural orthostatic tachycardia syndrome. Current theories about the pathophysiology of these conditions include immune dysregulation, neurological disturbances, cardiovascular dam- age, gastrointestinal dysfunction, metabolic issues, and mitochondrial dysfunction. More research is needed to understand the natural history and management of complex multisystem chronic conditions, including Long COVID.

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic in early 2020, many individuals infected with the virus that causes COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have continued to experience lingering symptoms for months or even years following infection. Some symptoms can affect a person's ability to work or attend school for an extended period of time. Consequently, in 2022, the Social Security Administration requested that the National Academies convene a committee of relevant experts to investigate and provide an overview of the current status of diagnosis, treatment, and prognosis of long-term health effects related to Long COVID. This report presents the committee conclusions.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

COVID-19 pandemic crisis—a complete outline of SARS-CoV-2

Sana saffiruddin shaikh.

1 Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001 India

Anooja P. Jose

2 Government College of Pharmacy, Aurangabad, 431001 India

Disha Anil Nerkar

Midhuna vijaykumar kv, saquib khaleel shaikh, associated data.

The data and material are available upon request. The graphs and figures used in the manuscript were generated and analyzed and are not used anywhere else before.

Coronavirus (SARS-CoV-2), the cause of COVID-19, a fatal disease emerged from Wuhan, a large city in the Chinese province of Hubei in December 2019.

Main body of abstract

The World Health Organization declared COVID-19 as a pandemic due to its spread to other countries inside and outside Asia. Initial confirmation of the pandemic shows patient exposure to the Huanan seafood market. Bats might be a significant host for the spread of coronaviruses via an unknown intermediate host. The human-to-human transfer has become a significant concern due to one of the significant reasons that is asymptomatic carriers or silent spreaders. No data is obtained regarding prophylactic treatment for COVID-19, although many clinical trials are underway.

The most effective weapon is prevention and precaution to avoid the spread of the pandemic. In this current review, we outline pathogenesis, diagnosis, treatment, ongoing clinical trials, prevention, and precautions. We have also highlighted the impact of pandemic worldwide and challenges that can help to overcome the fatal disease in the future.

Coronaviruses (CoVs) are a large family of RNA viruses; they show discrete point-like projections over their surface. They show the presence of an unusually large RNA genome and a distinctive replication strategy. The term “coronavirus” is acquired from the “crown”-like morphology. Coronaviruses show potential fatal human respiratory infections and cause a variety of diseases in animals and birds [ 1 ]. Coronavirus primarily targets the human respiratory system [ 2 ]. The World Health Organization (WHO) named the latest virus as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on 12 January 2020 [ 3 ]. The COVID-19 or the SARS-CoV-2 is rapidly unfurling from Wuhan in Hubei Province of China to worldwide [ 4 ].

Initial confirmation of the pandemic was carried out by conducting studies on 99 patients with COVID-19 pneumonia, from which 49% of patients exhibited a history of subjection to the Huanan seafood market. The patient examined had a clinical manifestation of fever, cough, shortness of breath, muscle ache, and sore throat-like symptoms [ 5 ]. COVID-19 has infected several hundreds of humans and has caused many fatal cases [ 6 ]. Worldwide, there have been 3,925,815 confirmed cases, including 274,488 deaths of COVID-19 as of 6:37 pm CEST 10 May 2020 reported to WHO [ 7 ].

This article outlines and gives a complete overview of SARS-CoV-2, including its pathogenesis, diagnosis, treatment, prevention, and precautions. This article also provides the current scenario of the pandemic worldwide, since new findings are rapidly evolving and can help the readers in upgrading their knowledge about the COVID-19. It also emphasizes the challenges faced by giving an idea about future strategies in fighting and preventing recurrence.

History and origin

Coronaviruses were not expected to be highly infectious to humans, but the outburst of a severe acute respiratory syndrome (SARS) in Guangdong province China in the years 2002 and 2003 proved to be devastating. SARS-CoV is the contributory agent of the SARS, also known as “atypical pneumonia”. The coronaviruses that spread before that time in humans mostly caused mild infections in immune-competent people. But after the emergence of SARS, another highly infectious coronavirus, MERS-CoV, appeared in Middle Eastern countries [ 8 , 9 ]. Research has shown that SARS-CoV-2 shows similarities with SARS-CoV and MERS-CoV. (Table ​ (Table1) 1 ) depicts a comparison of SARS-CoV-2 with SARS-CoV and MERS-CoV [ 10 – 16 ]. Several disseminating strains of coronaviruses were identified and were considered harmless pathogens, causing common cold and mild upper respiratory illness [ 17 ]. HCoV-229E [ 18 ] strain was isolated in 1966. HCoV-NL63 was first isolated from the Netherlands during late 2004. In 2012, MERS-CoV was first identified from the lung of a 60-year-old patient who was suffering from acute pneumonia and renal failure in Saudi Arabia [ 19 ]. About 8000 cases and 800 deaths worldwide were observed due to the outbreak of SARS first human pandemic in the dawn of the twenty-first century [ 20 ].

Comparison of coronaviruses

ParametersSARS-COV2SARS-COVMERS-COV
EpidemiologyDec 2019, Wuhan, ChinaNov 2002, Guangdong, ChinaApril 2012, Saudi Arabia
Animal reservoirBatsBatsBats
Intermediate hostPangolins/minks (yet to be confirmed)Palm civetsCamels
Receptor targetACE2ACE2DPP4
Fatality rate2.3%9.5%34.4%
Genetic similarity with the other

79.5% SARS-CoV

50% MERS-CoV

79.5% SARS-CoV-250% SARS-CoV-2
Virus typeSS-RNARNARNA
Total RNA sequence length of pathogen29,903 bp29,751 bp30,108 bp
M:F ratio2.70:11:1.252:1
Transmission route

Droplets; faeco-oral transmission; contact with infected individual or things

Human-to-human

Droplets; contact with infected individual or things; bat-civets-human

Human-to-human

Touching infected camel or consumption of meat or milk

Limited human-to-human transmission

Clinical symptomsFever, fatigue, dry coughFever, cough, myalgia, dyspnea, diarrheaFever, cough, respiratory distress, vomiting, diarrhea
Incubation7–14 days, 24 days2–7 days5–6 days
R 2.682.5> 1
Diagnostic methodsRRT-PCR, RT-PCR, RT-lamp, RRT-lamp, coronavirus detection kitRRT-PCR, RT-PCR, RT-lamp, RRT-lamp, coronavirus detection kitRRT-PCR, ELISA, micro neutralization assay, MERS-CoV serology test
Chest X-rayBilateral multi-lobular ground glass opacitiesGround glass opacitiesGround glass opacities; consolidation
Chest CT scanNo nodular opacitiesLobar consolidation; nodular opacitiesSingle or multiple opacities; bilateral glass opacities; sub-pleural and lower lobe predominance; septal thickness
PreventionHand hygiene; cough etiquette; avoiding unnecessary touching of the eyes or face.Hand hygiene; cough etiquette; avoiding unnecessary touching of the eyes or face.Hand hygiene; cough etiquette; avoiding unnecessary touching of the eyes or face; avoiding raw milk and meat consumption.
TreatmentRitonavir; lopinavir (in testing)Glucocorticoids; interferonRibavirin; interferon; analgesics (treatment not yet determined)

Note: despite the lower case fatality rate observed in COVID-19, the overall number of death far outweighs that from SARS and MERS

The α-CoVs HCoV-229E and HCoV-NL63 and β-CoVs HCoV-HKU1 and HCoV-OC43 are identified as a human susceptible virus with low pathogenicity and cause mild respiratory symptoms similar to common cold [ 21 ]. SARS-CoV and MERS-CoV result in severe respiratory tract infections [ 22 , 23 ]. COVID-19 was recently reported from Wuhan (China), which has cases in Thailand, Japan, South Korea, and the USA, which has been confirmed as a new coronavirus [ 24 ].

The coronavirus genera, which mostly infect mammals, are alpha-coronavirus and beta-coronavirus. Out of 15 presently assigned viral species, seven were isolated from bats. The research proposed that bats are significant hosts for alpha-coronaviruses and beta-coronaviruses and play an essential role as the gene source in the evolution of these two coronavirus genera SARS and MERS [ 25 ]. The genome sequence was found to be 96.2% identical to a bat CoV RaTG13, whereas it shares 79.5% identity to SARS-CoV. The virus genome sequencing outcomes and evolutionary analysis show that bat can be a natural host from virus source, and SARS-CoV-2 might be transferred from bats through unspecified intermediate hosts to infect humans [ 26 ]. It is found that SARS-CoV-2 affects males more than females [ 27 ]. The spread of SARS-CoV-2 emerged like a wild forest fire in many countries worldwide. Table ( ​ (2) 2 ) [ 28 ] gives a brief of the first identified cases of COVID-19 in different countries.

First confirmed case

CountryFirst confirmed case (dates)
China, East Asia31 December 2019
Thailand13 January 2020
Japan15 January 2020
Korea20 January 2020
USA23 January 2020
Vietnam24 January 2020
Singapore24 January 2020
Australia, Nepal, and French Republic25 January 2020
Malaysia26 January 2020
Canada27 January 2020
Cambodia, Germany, Sri Lanka28 January 2020
United Arab Emirates29 January 2020
Philippines, India, Finland30 January 2020
Italy31 January 2020
Russian Federation, Spain, Sweden, UK1 February 2020
Belgium5 February 2020
Japan6 February 2020
Egypt15 February 2020

The first confirmed case was reported in China, and since then, there was a widespread of coronavirus in other countries worldwide. Table ​ Table1 1 shows the first confirmed case with dates

Coronaviruses are spherical to pleomorphic enveloped particles [ 29 ]. The size ranges from 80 to 120 nm in diameter. The maximum size is as small as 50 nm and as large as 200 nm are also seen [ 30 ]. There are four types of main structural proteins observed in the coronaviruses: the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, which are encoded within the viral genome (Table ​ (Table3). 3 ). In thin sections, the virion envelope may be visualized as inner and outer shells separated by a translucent space [ 31 ]. The virion envelope contains phospholipids, glycolipids, cholesterol, di- and triglycerides, and free fatty acids in proportions. The complexed genome RNA is with the basic nucleocapsid (N) protein, which forms a helical capsid established within the viral membrane. The enclosed glycoproteins are responsible for attachment to the host cells [ 32 ].

Structural proteins of coronavirus and their functions

Structural proteinsFunctions of proteins
Spike protein (S)Virus and host cell fusion by binding
Membrane protein (M)Nutrient transport, determines shape, and formation of envelope
Envelope protein (E)Interferes with host immune response
Nucleocapsid protein (N)Binds with RNA genome and makes up nucleocapsid
Hemagglutinin-esterase (HE)Binds sialic acids on surface glycoprotein

According to the recent studies, it is observed that coronavirus which lacks envelope protein (E) serves as a good candidate in vaccine designing

The coronavirus genomes are among the most massive mature RNA molecules as compared to other eukaryotic RNAs (Fig. ​ (Fig.1) 1 ) [ 33 ]. The genome of these viruses contains multiple ORFS. A typical CoV consists of at least 6 ORFs in its genome. Several studies have confirmed the genetic resemblance between SARS-CoV-2 and a bat CoV.

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig1_HTML.jpg

Structure of novel coronavirus

A study conducted to compare the genetic mutations of COVID showed genomic mutations among viruses from different countries, wherein a sequence obtained from Nepal showed minimum to no variations. In contrast, the maximum number of modifications was obtained from one derived from the Indian series located in ORF1-ab nsp2 nsp3 helicase ORF8 and spike surface glycoprotein. Also, host antiviral mRNAs play a critical part in the regulation of immune response to virus infection, depending upon the viral agent. The unique host mRNAs could be explored in the development of novel antiviral therapies. The club-like surface projections or peplomers of coronaviruses are about 17–20 nm from the virion surface. It has a subtle base that swells to a width of about 10 nm at the distal extremity. Some coronaviruses that exhibit the second set of projections about 5–10-nm long are present beneath the significant projections. These shorter spikes are now known as hemagglutinin-esterase (HE) protein, an additional membrane protein found in a subset of group 2 coronaviruses. The primary role of this non-essential protein is to aid in viral entry and pathogenesis in vivo. It configures short projections that bind to N-acetyl-9-O-acetlyneuramic acid or N-glycolylneuraminic acid and have esterase [ 34 – 39 ]. Figure ​ Figure2 2 shows the primary classification of coronavirus.

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig2_HTML.jpg

Classification of coronavirus

Lifecycle of coronavirus

The life cycle of the virus with the host consists of the following four steps: attachment, penetration, biosynthesis, maturation, and release (Fig. ​ (Fig.3). 3 ). Once the virus binds to the host receptor, they enter host cells through endocytosis or membrane fusion. Once the viral contents are released inside the host cells, viral RNA enters the nucleus for replication. Viral mRNA is used to make viral proteins and is further proceeded by maturation and release [ 40 , 41 ].

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig3_HTML.jpg

Attachment and entry

The virion attachment with the host cell is initiated by interaction between S protein and its receptors, which is also a primary determinant for coronavirus infection. The S protein undergoes acid-dependent proteolytic cleavage, which results in exposure of fusion peptide. This fusion is followed by the formation of a six-helix bundle (bundle formation helps in combining viral and cellular membrane) and release of the viral genome into the cytoplasm.

Replicase protein expression

The process of translation of replicase gene ORFs1a and ORFs1b and translation of polyprotein pp1a and pp1ab takes place. Assembly of nsps into replicase-transcriptase complex (RTC) leads to viral RNA synthesis (replication and transcription of subgenomic RNAs).

Replication and transcription

In the replication process, the viral RNA synthesis is followed by the production of genomic and sub-genomic RNAs (sub-genomic mRNAs), which further leads to recombination of the virus.

Assembly and release

The insertion and translation of viral structure protein S, E, and M takes place into the endoplasmic reticulum (ER), which is followed by the movement of proteins along the secretory pathway into ERGIC (endoplasmic reticulum Golgi intermediate compartment). The viral genome is encapsidated by N protein into the membrane of ERGIC. M and E protein expression give rise to the formation of virus-like particles (VLPs). After the assembly of the virion and its transportation to cell surface vesicles, exocytosis takes place. Finally, it results in viral release (E protein helps by altering the host secretory pathway).

The incubation period is the period between the entry of the virus into the host and appearance of signs and symptoms in the host or the period between the earliest date of contact of the transmission source and the most initial time of symptom onset (i.e., cough, fever, fatigue, or myalgia) [ 42 ]. The incubation period of COVID-19 is vital as the disease could be transmitted during this phase through asymptomatic as well as symptomatic carriers (Table ​ (Table4). 4 ). The inhaled virus SARS-CoV-2 binds to the epithelial cells present in the nasal cavity and starts replicating.

Incubation period of coronaviruses

Coronavirus strainIncubation periodDeath periodSymptoms
SARS-CoV4–10 days20–25 daysFever, dry cough, myalgia, dyspnea, headache, sore throat, sputum production, rhinorrhea, watery diarrhea, confusion, poor appetite.
MERS-CoV5–6 days11–13 daysMyalgia, fever, chills, malaise associated with confusion, cough, shortness of breath, dyspnea, pneumonia
COVID-193–7 days17–24 daysFever, cough, dyspnea, muscle ache, confusion, headache, sore throat, rhinorrhea, chest pain, diarrhea, nausea, vomiting, anosmia, dysgeusia

On the basis of studies conducted and data findings, virologists points out that incubation period extends to 14 days, with a median time of 4–5 days from exposure to symptom onset. One study reported that 97.5% of persons with COVID-19 who develop symptoms will do so within 11.5 days of SARS-CoV-2 infection

ACE2 is the primary receptor for both SARS-CoV-2 and SARS-CoV, which is an asymptomatic state (initial 1–2 days of infection). Upper airway and conducting airway response are seen the next few days. The disease is mild and mostly restricted only to the upper conducting airways for about 80% of the infected patients [ 43 ].

The incubation period is required to create more productive quarantine systems for people infected with the virus. The incubation period for the COVID-19 is between 2 and 14 days after exposure. A newly infected person shows symptoms in the about 5 days after contact with a sick patient. In most patients, symptoms appeared after 12–14 days of infection

The average incubation period was approximated to be 5.1 days, and 97.5% of those who develop symptoms will do so within 11.5 days of infection. In Wuhan’s return patients, the average incubation period is found to be 6.4 days. In a case reported by Hubei province, local government on 22 February showed an incubation period of 27 days. In another case, an incubation period of 19 days was observed. Therefore a 24-day observation period is considered in suspected cases by the Chinese government and also by WHO [ 44 – 51 ]. The frequency of cases is increasing day by day, and it is essential to keep a check over it. Figure ​ Figure4 4 gives a glance of confirmed cases cumulative and death overtime cumulative from 10 January onwards up to 25 May.

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig4_HTML.jpg

a Graph of confirmed (cumulative) cases overtime in various countries . b Graph of death (cumulative) overtime in various countries

Pathogenesis

Like other CoVs, the SARS-CoV-2 is transmitted primarily via respiratory droplets and possible faeco-oral transmission routes [ 52 ]. Figure ​ Figure5 5 gives a complete outline of the pathogenesis of coronavirus. On infection, primary viral replication is expected to occur in the mucosal epithelium of the upper respiratory tract with further multiplication into the lower respiratory tract and GI mucosa, giving rise to mild viremia. The virus enters the host cells through two methods either:

  • I. Direct entry
  • II. Endocytosis

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig5_HTML.jpg

Complete pathogenesis of coronavirus

These are positive sense ss-RNA viruses that can cause respiratory, enteric, hepatic, and neurologic diseases. High binding capacity with SARS-CoV-2 was observed by molecular biological analysis [ 53 ]. The ACE2 gene encodes the angiotensin-converting enzyme-2 receptor for both the SARS-CoV and the human respiratory coronavirus NL63. Recent studies show that ACE2 could be the host receptor for the novel coronavirus 2019-nCoV/SARS-CoV-2 [ 54 ].

Human angiotensin-converting enzyme 2 (hACE2), which was the binding receptor of SARS-CoV, is analogous to SARS-CoV-2. These hACE2 are type 1 membrane proteins expressed in various cells of the nasal mucosa, lung, bronchus, heart, kidney, intestines, bladder, stomach, esophagus, and ileum. It functions as an enzyme in the RAS and is, therefore, mainly associated with cardiovascular diseases [ 55 ].

The zinc peptidase ACE2 has also expressed in the alveolar type 2 pneumocytes, which explains its role in lung damage due to SARS-CoV. The SARS-CoV-2 shows 10–12-fold more affinity towards the proteins than the other SARS-CoV. Pathophysiology and virulence of the virus link to the function of its nsps and structural proteins. The nsp can block the host’s innate mechanism response while the virus envelope increases the pathogenicity as it assists the assembly and release of the virus [ 56 ].

The CoV spike glycoproteins comprise of three segments—a large ectodomain, a single-pass transmembrane anchor, and a small intracellular tail. The ectodomain is composed of the receptor-binding domain (RBD)—the S1 and the membrane fusion subunit S2. The two significant areas in s1, N-terminal domain (NTD) and the c-terminal domain (CTD), have been identified. The S1 NTDs are essential for binding to the sugar receptors, and the s1 CTDs are responsible for binding receptors ACE2, SPN, and DPP4 [ 57 ]. The S proteins undergo a considerable structural rearrangement to fuse with the viral membrane of the host cell membrane. The s1 subunit shedding and the s2 subunit transition to a highly stable conformation is the initial step in the fusion process [ 58 ]. The ACE2 consists of the N-terminal peptidase domain (NPD) and the C-terminal collectrin-like domain (CCTD) that ends with a single transmembrane helix and a 40 residue intracellular segment. It provides a direct binding site for S protein of CoVs.

The enzymes which assist this virus attachment include the serine protease enzymes TMPRSS2. These enzymes, which are cell-surface proteases, facilitate entry. In endosomes, the S1 of s proteins is cleaved, and the fusion peptides S2 are exposed. This exposed S2 unit brings the HR1 and HR2 together, resulting in membrane fusion and thereby release of viral package into the host membrane [ 59 ].

The viral RNA enters the nucleus for replication after the viral contents are released. Viral mRNA is used to make viral proteins. Decreased expression of ACE2 in a host cell results in an attack on the airway epithelium by the virus. These lead to acute lung injury that triggers immune responses. The release of various pro-inflammatory and chemokines like IL-6, IFN- gamma, MCPI 1, and IL-10 leads to capillary permeability in alveolar sacs. Due to local inflammation in the lungs, the secretion of pro-inflammatory cytokines and chemokines increases into the blood circulation of the patient. It results in fluid filling and increased difficulty in the exchange of gases across the membrane. Viral replication and infection in airway epithelial cells could cause high levels of virus-linked pyroptosis with associated vascular leakage. IL-beta cytokine released during pyroptosis is a highly inflammatory form of programmed cell death, which is the trigger subsequent inflammatory response. The IgG antibodies against SARS-CoV-2 N protein can be detected in the serum in the early stages at the onset of the disease. The non-neutralizing antibodies result in ADE (antibody-dependent enhancement), which leads to an increased systematic inflammatory response.

The pro-inflammatory cytokines and chemokines are an indicator of T H cells. Secretions from such cytokines and chemokines attract immune cell monocytes and T lymphocytes. High levels of pro-inflammatory cytokines, including IL-2, IL-7, IL-10, IP-10, G-CSF, MCP-1, MIP-1A, and TNF alpha, were detected in the severe infection called cytokine storm or cytokine release syndrome as a crucial factor in the pathogenesis of COVID-19.

The cytokine storm increases the inflammatory response resulting in increased blood plasma levels of neutrophils IL-6, IL-10, granulocytes, MCP1, TNF, and decreased organ perfusion, which results in multiple organ failure. Cytokine storm and pulmonary edema due to ACE2 dysregulation result in acute respiratory distress syndrome. SARS-CoV-2 can also affect the CNS [ 60 ]. Myocardial damage increases the difficulty and complexity of patient treatment [ 61 ]. Clinical investigations have shown that patients with cardiac diseases, hypertension, or diabetes, who are treated with ACE2-increasing drugs, including inhibitors and blockers, are at higher risk of getting infected with SARS-CoV2 [ 62 ]. Death results due to ARDS and multiple organ failure.

People with COVID-19 infection show symptoms ranging from mild to severe illness. Figure ​ Figure6 6 shows a brief outline of various symptoms related to COVID-19. The warning signs and symptoms such as trouble breathing, constant pain or pressure in the chest, inability to wake or stay awake, and bluish lips or face are observed in patients [ 63 ]. Older people (65 years and older) are at higher risk of developing the disease.

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig6_HTML.jpg

Symptoms for coronavirus

According to a study, people of all ages having asthma, diabetes, HIV, liver diseases, severe heart conditions, severe obesity (body mass index [BMI] of 40 or higher), and chronic kidney diseases undergoing dialysis show a higher mortality rate. The other populations with people showing disabilities, pregnancy, and breastfeeding and people experiencing homelessness, racial, and minority groups are at elevated risk of transmission of disease [ 64 ]. The crucial fact to know about coronavirus on surfaces is that they can easily be cleaned with ordinary household disinfectants that will kill the virus [ 65 ]. Studies have shown (Fig. ​ (Fig.7) 7 ) that the COVID-19 virus can survive for up to 72 h on plastic and stainless steel, about 4 h on copper, and less than 24 h on cardboard [ 66 ].

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig7_HTML.jpg

Survival of virus on various objects

Diagnosis: COVID-19

There are two categories of tests available for COVID-19:

  • Viral tests: a viral analysis indicates whether a person has a current infection.
  • Antibody tests: an antibody indicates whether a person had an infection.

The protection of getting infected again in a person showing the presence of antibodies to the virus is still unexplained [ 67 ].

Tests for current infection

A swab sample is collected (from the nose) to conclude that a person is currently infected with SARS-CoV-2. Some tests are called as point-of-care tests, which means their results may be available in less than an hour. Other test takes 1–2 days for analyzing after being received by the laboratory [ 68 ].

Test for past infection

Antibody tests analyze a blood sample for the presence of antibodies, which show if one had a previous infection with the virus. Antibody tests cannot be used to diagnose someone as being currently infected with COVID-19. Antibody tests are accessible through healthcare providers and laboratories [ 69 ]. In severe cases, clinical diagnosis is done based on the clinical manifestations of respiratory failure syndrome, increased liver function tests, blood tests indicating leukopenia, and high levels of ferritin. For such, a test for soluble CD-163 (sCD-163), showing the activation of macrophages, was suggested [ 70 ]. Laboratory diagnosis included genomic sequencing, reverse-transcription polymerase chain reaction (RT-PCR), and serological methods (such as enzyme-linked immunoassay [ELISA]). Because of the rapidly changing diversity found in the expression of the novel coronavirus, pneumonia became diverse and quickly changed. Other methods used are radiographic images for early observations and evaluation of disease severity [ 71 ].

Reverse-transcription polymerase chain reaction (RT-PCR) shows high sensitivity for new SARS cases. The suspected cases must be confirmed by using RT-PCR and other methods (slower methods) of detection such as serology or viral culture, isolation, and identification by electron microscopy, thereby causing a significant increase in the time required for an accurate diagnosis [ 72 ]. The samples are collected from upper and lower respiratory tracts through expectorated sputum, bronchoalveolar lavage, or endotracheal aspirate, which are then assessed by conducting polymerase chain reaction for viral RNA. It is recommended to repeat the test for reevaluation purposes in case of a positive result, and if the test is negative, a strong clinical impression also permits repeat testing [ 73 ].

An alternative diagnostic test to detect the SARS-CoV is mass spectroscopic identification of microbial nucleic acid signatures. Computed tomography images of the lungs showed 100% multiple patchy with fine mesh and consolidated shade distributed under the pleura. Nucleic acid tests were conducted in 187 patients, and all were positive to SARS-CoV-2. In the pulmonary CT images, 8% of them (15 cases) showed diffused lesions in either lungs or white lung. In the absorptive period, 98.9% showed fibrogenesis and diminished lesions. The CT imaging features differed from each follow-up showing different clinical symptoms [ 74 ]. The improvement in the detection of COVID-19 was found by the ELISA method. It is based on SARS r-CoV Rp3 nucleocapsid protein, which helps to detect the IgM and IgG against SARS-CoV-2. ELISA is a highly recommended method as the sampling blood is less stringent, and antibodies allow longer windows than oropharyngeal swabs for detecting viruses [ 75 ].

There is no particular treatment recommended for COVID-19. There is no data obtained regarding prophylactic treatment for COVID-19, only we can prevent from coming in contact with the pathogen. Confirmed cases are hospitalized and admitted in the same ward. Patients with mild symptoms may not require hospitalization [ 76 ]. They are isolated or self-isolated at home by following the doctor’s advice. Critically ill patients (respiratory shock, respiratory failure, septic shock, or other organ failures) should be admitted to ICU as soon as possible [ 77 ].

General treatment

The general treatment includes bed rest and supportive measures ensuring sufficient intake of calories, fluid, and electrolytes, and maintenance of acid-base homeostasis. Monitoring oxygen saturation and vital signs, keeping the respiratory tract unobstructed and inhaling oxygen, measuring C-reactive protein, hematology and biochemistry laboratory testing and ECG, blood gas analysis, and examining of chest images as when required and monitoring for any complications [ 78 ]. Patients having high body temperature above 38.5°C Celsius are administered with ibuprofen and acetaminophen orally.

Oxygen therapy

Patients with conditions of obstructed breathing, respiratory distress, shock, coma, and convulsions must receive oxygen therapy and airway management, targeting SpO2 more significant than 94%. Initiate O 2 treatment at 5 L/min and titrated to reach the target or use a face mask with a reservoir bag (10–15 L/min) if the patients are in critical condition.

Once stable, the target is 90% SpO2 in non-pregnant adults and 95% in pregnant adults. The use of nasal prongs or nasal cannula is preferred in young children, as they may be better tolerated. When oxygen therapy fails, mechanical ventilation is necessary. In a meta-analysis, the use of additional oxygen therapy (38.9%), non-invasive (7.1%) and invasive ventilation (28.7%), and even ECMO (0.9%) was surprisingly high among the 1876 patients in which any kind of pharmacological and supportive intervention was reported [ 79 ].

Antiviral agents

Remdesivir inhibits virus infection at the micromolar level (0.77–1.13 μM) and with high selectivity [ 80 ]. Remdesivir gets incorporated into viral RNA due to its adenosine analog nature and results in premature chain termination [ 81 ]. Remdesivir is not approved by the Food and Drug Administration (FDA). It is only recommended for mild or moderate COVID-19 conditions and the treatment of hospitalized adults and children in emergencies.

Chloroquine/hydroxychloroquine

Chloroquine increases endosomal pH, making the environment unfavorable for viral cell fusion. It also affects the glycosylation process of ACE-2. On administering chloroquine after 1 h of infection, gradual loss of antiviral activity was seen, though it affects the endosome fusion when administered shortly after the infection. When administered after 3–5 h after the infection, chloroquine was significantly effective against HCoV strain OC43 [ 82 ]. There is an excessive risk of toxicities due to high chloroquine doses; the recommended dose for chloroquine is 600 mg twice daily for 10 days for the treatment of COVID-19.

Interferon–alpha

Interferon-α is used in treating bronchiolitis; viral pneumonia; acute upper respiratory tract infection; hand, foot, and mouth disease; SARS; and other viral infections in children. According to the clinical research and experiences, the following usage is recommended for COVID-19

  • Interferon-α nebulization: interferon-α 200,000–400,000 IU/kg or 2–4 μg/kg in 2 mL sterile water, nebulization two times per day for 5–7 days
  • Interferon-α2b spray: applied for high-risk populations with close contact with suspected COVID-19 infected patients or those in the early phase with only upper respiratory tract symptoms.

Lopinavir/ritonavir

In a clinical trial among adult patients of or less than 18 years, it was observed that a combination of lopinavir/ritonavir, ribavirin, and interferon beta-1b would speed up the recovery, suppress the viral load, shorten hospitalization, and reduce mortality compared with lopinavir/ritonavir [ 83 ].

Immune-based therapy

Patients who show an inadequate response to initial therapy can get benefit from immunoglobulin [ 84 ]. Non-SARS-CoV-2-specific IVIG should not be used for COVID-19 except in case of clinical trials.

Corticosteroids

Corticosteroids are widely used in the symptomatic treatment of severe pneumonia. According to a detailed review and analysis, the result indicates that patients with severe conditions required corticosteroid therapy [ 85 ]. According to a systematic review of literature, daily use of corticosteroids in a COVID-19 patient is not encouraged; however, some studies suggest that methylprednisolone can reduce the mortality rate in more severe conditions, such as in ARDS [ 86 ].

Antimicrobial therapy

Patients with a mild type of bacterial infection can take oral antibiotics, such as cephalosporin or fluoroquinolones. Although a patient may be a suspect for COVID-19, appropriate antimicrobial agent should be administered within an hour of recognition of sepsis. Antibiotic therapy should be based on the clinical diagnosis of community-acquired pneumonia, healthcare-associated pneumonia, local epidemiology, susceptibility data, and national treatment guidelines. When there is the ongoing local circulation of seasonal influenza, this therapy with a neuraminidase inhibitor should be considered for the treatment for patients [ 87 ].

Tocilizumab

According to a review, 25 patients with laboratory-confirmed severe COVID-19 who received tocilizumab and completed 14 days of follow-up, 36% were discharged alive from the intensive care unit, and 12% died [ 88 ]. The biopsy specimen analysis suggested that increased alveolar exudates resulted from an immune response against an inflammatory cytokine storm. Probably an obstruction in alveolar gas exchange contributed to the high mortality rate of severe COVID-19 patients. A study identified that pathogenic T cells and inflammatory monocytes arouse an inflammatory storm with a large amount of interleukin 6. Tocilizumab blocks IL-6 receptors, which shows encouraging clinical results, including controlling temperature quickly and improved respiratory functions. Henceforth, tocilizumab is useful in the treatment of severe COVID-19 patients to calm the inflammatory storm and reduce mortality [ 89 ].

FDA-approved drug ivermectin for parasitic infection has a possibility for reprocessing and acts as an inhibitor of SARS-CoV-2 in vitro. A single therapy can affect approximately 500-fold reduction and effectual loss of substantially all viral material by 48 h [ 90 ]. A single of ivermectin, in combination with doxycycline, yielded the near-miraculous result in curing the patients with COVID-19 virtually.

Azithromycin

Azithromycin is used for patients with viral pneumonia from COVID-19. It can also work synergistically and coactively with other antiviral treatments. It has also shown antiviral activity against the Zika virus and rhinoviruses, which cause the common cold. Viral infection was significantly reduced in patients receiving hydroxychloroquine than those who did not. The virus elimination was efficient in patients who received both azithromycin and hydroxychloroquine [ 91 ]. (Table ​ (Table5) 5 ) lists other supporting agents used in treatment [ 92 ].

Supporting agents used in treatment

Antiviral agentsSupporting agentsOthers

• Baloxavir

• Chloroquine phosphate

• Favipiravir

• HIV protease inhibitors

• Hydroxychloroquine

• Neuraminidase inhibitor

• Remdesivir

• Umifenovir

• Anakinra

• Azithromycin

• Baricitinib (Olumiant®)

• Colchicine

• Corticosteroids (general)

• COVID-19

• Convalescent plasma

• Epoprostenol (inhaled)

• Methylprednisolone (DEPO-Medrol®, SOLU-Medrol®)

• Nitric oxide (inhaled)

• Ruxolitinib (Jakafi®)

• Sarilumab (Kefzara®)

• Siltuximab (Sylvant®)

• Sirolimus (Rapamune®)

• Tocilizumab (Actemra®)

• ACE inhibitors, angiotensin II receptor blockers (ARBs)

• Anticoagulants (low molecular weight heparin [LMWH], unfractionated heparin [UFH])

• Famotidine

• HMG-CoA reductase inhibitors (statins)

• Immune globulin (IGIV, IVIG, γ-globulin)

• Ivermectin

• Nebulized drugs

• Niclosamide

• Nitazoxanide

• Nonsteroidal anti-inflammatory agents (NSAIDs)

• Tissue plasminogen activator (t-PA; alteplase)

The repurposing of available therapeutic drugs is being used as supporting agents in the treatment of COVID-19; however, the efficacy of these treatments should be verified by using designed clinical trials

Precautions and preventions

WHO declared the COVID-19 outbreak as a public health emergency of international concern on 30 January 2020. Unfortunately, no medication until now is approved by the FDA, and various trials are going on. Still, the most effective weapon the community has in hand is the prevention of spread. The following are some of the COVID-19 prevention measures.

  • Quarantine: self-quarantine, mandatory quarantine (private residence, hospital, public institution, etc.)
  • Other measures: avoiding crowding, hand hygiene, isolation, personal protective equipment, school/workplace measures/closures, social distancing [ 93 ].

Asymptomatic carriers as the “silent spreaders” are of great concern for the elimination of disease and its control. So, more attention should be given to them [ 94 ]. Hand hygiene with alcohol-based hand-rub is globally recommended as productive and economical procedures against SARS-CoV-2 cross-transmission [ 95 ]. The economic implications of hand hygiene have been established. It has been found that this cost under 1% of total HAI-related economics. It is better to invest not only in the materials needed but also in the people working there. This investment will lead to an increase in the health outcome [ 96 ]. The clinical presentation of COVID-19 is non-specific, so it needs a robust and accurate diagnosis. It has been suggested that before stopping the infection control measures, we have to be sure to exclude the diagnosis [ 97 ]. Prevention plays a vital role in treating and defeating the COVID-19 disaster.

The Centers for Disease Control and Prevention gives standard precautions (Fig. ​ (Fig.8) 8 ) and recommends measures to prevent COVID-19. Wear personnel protective equipment (face shield, mask, gown, gloves, and closed-toed shoes) when evaluating persons at risk. N-95 masks are known to prevent up to 95% of small particles, including viruses [ 98 ]. Cover all coughs/sneezes with a tissue and then throw the tissue away. Regularly clean/disinfect frequently touched objects and surfaces with household cleaning spray and use a tissue when handling (e.g., doorknobs, sink taps, water fountain handles, elevator buttons, cross-walk buttons, and shopping carts). Avoid contact with infected people (recommended > 6 ft) and maintain an appropriate distance as much as possible and refrain from touching nose eyes and mouth [ 99 ]. Avoid well persons when you are ill. Wear a mask continuously if taking care of persons with respiratory illness. To turn on the tap, use a paper towel and then wash hands with soap and water for at least 30 s after going to the bathroom. Use hand sanitizer and carry whenever at a public venue. Activate community-based interventions (e.g., cancel sporting events, dismiss, termination of universities and schools, practice social distancing, create employee plans to work remotely) [ 100 ]. Create a household-ready plan. Cancel any non-essential travel [ 101 ]. Frequent disinfection and cleaning are advised for groups that are at risk of contracting the virus [ 102 ].

An external file that holds a picture, illustration, etc.
Object name is 43094_2020_133_Fig8_HTML.jpg

Prevention and precaution

In an Indian study mathematical approach was used to address some questions related to intervention strategies to control the COVID-19 transmission in India. Some hypothetical epidemic curves helped to illustrate the critical findings [ 103 ]. Predication of spread and implications of prevention and control using the Maximum-Hasting (MH) parameter assessment method and the modified Susceptible Exposed Infectious Recovered (SEIR) model was done. Suppression, mitigation, and mildness were the three predicted outlines for the spread of infection in some African countries [ 104 ].

Infection control strategies that can be acquired in hospitals were accomplished in a Taiwanese hospital to tackle the COVID-19 pandemic. These included emergency vigilance and responses from the hospital administration, education, surveillance, patient flow arrangement, the partition of hospital zones, and the prevention of a systemic shutdown by using the “divided cabin, divided flow” strategy. These measures may not be universally appropriate [ 105 ]. The preventive measures implemented in China included countrywide health education campaigns. The Examine and Approve Policy on the continuation of work, working and living quarters, a health Quick Response code system, community screening, and social distancing policies were some of the preventive measures [ 106 ].

Based on the analysis of immigration population data, the Epidemic Risk Time Series Model was outlined to estimate the effectiveness of COVID-19 epidemic control and prevention among different regions in China. Compared to other methods, this model was able to issue early recognition more instantaneously. For the prevention and control of COVID-19, this model can be generalized and applied to other countries [ 107 ]. The majority of clinical trials involving COVID-19 vaccines or treatment are showing encouraging results. (Tables ​ (Tables6 6 and ​ and7) 7 ) show ongoing phase 3 and 4 clinical trials [ 108 ].

Ongoing clinical trials phase 3 studies

Study titleConditionsInterventionsLocations
Randomized evaluation of COVID-19 therapySevere acute respiratory syndromeDrugs: hydroxychloroquine, lopinavir/ritonavir, corticosteroid, azithromycin, tocilizumabNuffield Department of Population Health, University of Oxford, Oxford, UK
Hydroxychloroquine and zinc with either azithromycin or doxycycline for treatment of COVID-19 in outpatient setting COVID-19Drugs: hydroxychloroquine, azithromycin, zinc sulfate, doxycyclineSt. Francis Hospital, Roslyn, NY, USA
Favipiravir in hospitalized COVID-19 patientsCOVID-19Drugs: favipiravir, hydroxychloroquineShahid Modarres Hospital, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
Baricitinib therapy in COVID-19COVID-19 pneumoniaDrug: baricitinib 4 mg oral tabletFabrizio Cantini, Prato, Tuscany, Italy
Treatment for COVID-19 in high-risk adult outpatientsCOVID-19 SARS-CoV-2Drugs: ascorbic acid, hydroxychloroquine sulfate, azithromycin, folic acid

• Boston University, Boston, MA, USA

• University of Washington Coordinating Center, Seattle, Washington, USA

• UW Virology Research Clinic, Seattle, WA, USA and 4 more

Convalescent plasma for hospitalized adults with COVID-19 respiratory illness (CONCOR-1)COVID-19Other: convalescent plasma

• Vancouver General Hospital, Vancouver, British Columbia, Canada

• Victoria General Hospital, Victoria, British Columbia, Canada

• London Health Sciences Centre—University Hospital, London, Ontario, Canada and 25 more

BCG vaccine for health care workers as defense against COVID-19Coronavirus infection, Coronavirus as the cause of diseases classified elsewhereBiologicals: BCG vaccine, placebo vaccine

• Harvard T.H. Chan School of Public Health, Boston, MA, USA

• Baylor College of Medicine, Houston, TX, USA

• MD Anderson Cancer Center, Houston, TX, USA and 4 more

Outcomes related to COVID-19 treated with hydroxychloroquine among in-patients with symptomatic disease

Coronavirus acute respiratory infection

-SARS-CoV infection

• Drugs: hydroxychloroquine, placebo

• Stanford University, Stanford, CA, USA

• University of Colorado Hospital, Aurora, CO, USA

• Denver Health Medical Center, Denver, CO, USA and 40 more

Treatment of COVID-19 patients with anti-interleukin drugsCOVID-19

• Other: usual care

• Drugs: anakinra, siltuximab, tocilizumab

• University Hospital Saint-Pierre, Brussels, Belgium

• University Hospital Antwerp, Edegem, Belgium

• University Hospital Brussels, Jette, Belgium 13 more

Study to evaluate the safety and antiviral activity of remdesivir (GS-5734™) in participants with severe coronavirus disease (COVID-19)COVID-19Drug: remdesivir

• Kaiser Permanente Los Angeles Medical Center, 3340 E. La Palma Avenue, Anaheim, CA, USA

• Alta Bates Summit Medical Center, Berkeley, CA, USA

• Mills-Peninsula Medical Center, Burlingame, CA, USA and180 more

Ongoing clinical trials, phase 4 studies

Study titleConditionsInterventionsLocations
Evaluation of Ganovo (danoprevir) combined with ritonavir in the treatment of SARS-CoV-2 infectionCOVID-19Drug: Ganovo + ritonavir/interferon nebulization• The Ninth Hospital of Nanchang, Nanchang, Jiangxi, China
The use of tocilizumab in the management of patients who have severe COVID-19 with suspected pulmonary hyper inflammationCOVID-19 pneumoniaDrug: tocilizumab

• Hadassah Medical Orginisation, Jerusalem, Israel

• Barzilai Medical Center, Ashkelon, Israel

• Wolfson Medical Center, Holon, Israel

• Sheba Medical Center, Ramat Gan, Israel

Fluoxetine to reduce intubation and death after COVID19 infectionCOVID-19 cytokine stormDrug: fluoxetineUniversity of Toledo, Toledo, OH, USA
Hydroxychloroquine and zinc with either azithromycin or doxycycline for treatment of COVID-19 in outpatient settingCOVID-19Drug: hydroxychloroquine, azithromycin, zinc sulfate, doxycyclineSt Francis Hospital, Roslyn, NY, USA
Favipiravir in hospitalized COVID-19 patientsCOVID-19Drug: favipiravir, hydroxychloroquineShahid Modarres Hospital, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
Azithromycin in hospitalized COVID-19 patientsCOVID-19Drug: hydroxychloroquine, azithromycinShahid Modarres Hospital, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran, Islamic Republic of
Prophylaxis of exposed COVID-19 individuals with mild symptoms using chloroquine compounds

• SARS-CoV2

• Symptomatic condition

• COVID-19

• Drug: hydroxychloroquine sulfate regular dose, hydroxychloroquine sulfate loading dose, chloroquine, placebo

• Expo COVID Isolation Center/Mayo Hospital Field Hospital, Lahore, Punjab, Pakistan

• Mayo Hospital/King Edward Medical University, Lahore, Punjab, Pakistan

• Pakistan Kidney and Liver Institute, Lahore, Punjab, Pakistan

BCG vaccine for health care workers as defense against COVID 19

• Coronavirus

• Coronavirus infection

• Coronavirus as the cause of diseases classified elsewhere

• Biological: BCG vaccine

• Biological: placebo vaccine

• Cedars-Sinai Medical Center, Los Angeles, CA, USA

• Harvard T.H. Chan School of Public Health, Boston, MA, USA

• Texas A&M Family Care Clinic, Bryan, TX, USA and 4 more

Hydroxychloroquine in patients with newly diagnosed COVID-19 compared to standard of care

• COVID-19

• Coronavirus Infection

• SARS-CoV-2

• 2019-nCoV

• 2019 novel coronavirus

• Drug: hydroxychloroquine

• Dietary supplement: vitamin C

Portland Providence Medical Center, Portland, OR, USA
Efficacy of dexamethasone treatment for patients with ARDS caused by COVID-19Acute respiratory distress syndrome caused by COVID-19• Drug: dexamethasone

• ICU, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain

• Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Las Palmas, Spain

• Department of Anesthesia, Hospital Universitario de Cruces, Barakaldo, Vizcaya, Spain and 21 more

Impact of COVID-19 on overall health of the people worldwide

The international response to COVID-19 has been more transparent and efficient when compared to the SARS outbreak [ 109 ].

The pandemic COVID-19, being a most severe strainer, is affecting the overall health system worldwide. There is a continuously increasing demand for healthcare facilities and associated workers, which is overstretching the ability to operate efficiently [ 110 ]. Some pieces of evidence are showing a destructive effect on maternal and child health. Some financial, educational, sanitation, and even clinical constraints are threatening the overall population of the children [ 111 ]. As coronavirus is sweeping across the world, the primary psychological impact is elevated in terms of stress and anxiety. The quarantine period is expected to raise cases involving suicidal behavior, substance abuse, self-harm, depression, and loneliness. WHO Department of Mental Health and Substance use has given some messages to overcome psychological impacts [ 112 ]. There is a relationship between human development and infectious diseases. Whichever changes (new technology, constructions of dams, deforestations, migration, increasing populations, the emergence of urban ghettoes, globalization of food, and increasing international travel) brought about by the development, are stretching the word into the mouth of such pandemics indirectly. This pandemic is having a significant impact on the global economy as the erosion of capacity and rise in poverty [ 113 , 114 ].

COVID-19 has affected the population differently based on gender. Significantly, this crisis is affecting the reproductive and sexual health of women. Another point is that there should be an equal contribution to both the genders in any healthcare body. There should be more distribution of decision-making power among them [ 115 ]. Protective measures can effectively prevent COVID-19 infection, including improving personal hygiene, wearing N95 masks, adequate rest, and proper ventilation [ 116 ].

Have to learn to live with COVID-19

The Health Ministry has said that we have to learn to survive with COVID-19. We cannot step ahead by carrying the burden of COVID-19 that could recur annually and kill so many people [ 117 ]. Governments are learning to strike a balance between controlling COVID-19 spread and allowing individual freedoms and economic activity. Measures such as lockdowns, arbitrary travel bans, widespread quarantines, intrusive screening of people crossing boundaries can be adopted for prevention. Virtual work will become much more common. Supplier close-downs, sudden employee truancy, and demand collapse caused by disease outbreaks will make the businesses able to withstand disruptions.

The government, industry, or specialist certification for disease control processes and standards similar to ISO 9001 or USFDA certificate will be a crucial part of many businesses. The cost of traveling will expand more due to the risk of infection and lockdown. At the same time, the responsibility of work airlines, hotels, and restaurants will be added to minimize infection risk. Delivery businesses will perform well, and “Contactless delivery” is already a thing.

The industries that provide products to help circumvent, control, diminish, or treat COVID-19 will flourish. The requirement for hospital rooms will increase tremendously, with an increasing need for reserves of equipment, supplies, and drugs. In the upcoming time, businesses are likely to face demand crisis as the world comes to terms with living in a state of medical beleaguerment [ 118 ]. It is just a prediction, but we can still aspire for the best [ 119 ]. The most destructive effects would be in countries with weak health systems, on-going disputes, or existing infectious disease epidemics.

In contrast, the health systems in high-income countries would be stretched out by the outbreak [ 120 ]. It has been seen that resources are limited in countries with poor scientific infrastructure, such as Nepal, where there was only one laboratory equipped to test for coronavirus infection. Fear and stigma is an evident feature of the COVID-19; it has affected the economic and social development of many countries worldwide [ 121 ].

The insufficiency of the trained workforce capable of performing experiments required to test for SARS-CoV-2 and interpret the results is another major limitation in the testing and confinement of COVID-19 in developing countries [ 122 ]. The virus has the potential to adapt and get through the different environmental conditions, which makes it quite difficult to identify its mode of survival [ 123 ]. Another crucial impediment in a research project is a suitable model to investigate in vivo mechanism associated with the pathogenesis of SARS-CoV-2 [ 124 – 126 ].

Current screening approaches for COVID-19 are likely to miss approximately 50% of the infected cases, even in countries with sound health systems and available diagnostic capacities. Many symptoms correlated with COVID-19 are similar to malaria, such as fever, difficulty in breathing, fatigue, and headaches of acute onset. If symptoms alone are used to specify a case during the emergency period then, a malaria case may be misinterpreted as COVID-19. The symptoms for malaria are seen within 10–15 days after an infective bite; multi-organ failure is common in severe cases among adults, while respiratory distress is also expected in children [ 127 ].

COVID-19 has emerged as the most terrified and enormous viral infection. According to WHO, the coronavirus might become an endemic disease. Originating from China as a global pandemic, it has influenced people on a large scale. There is no clear end that can be seen for this contagious disease. The only possible cure for this pandemic is prevention. We have to face it as a global community and support each other. The amplification of positivity will have a tremendous impact on the whole society. It is the duty of each individual for self-supervision and to report COVID-19 status, and challenging for those who appear to be ill. The other measure which can be followed to tackle this pandemic is healthy nourishment, sanitation, and hygiene practices robust connection and communication among children, and counseling to face the situation. Special care should be given to older people and pregnant ladies. It is better to get information only from the trusted sources; it is vital to get the facts and not the misinformation or rumors. Healthcare servants should have excellent and accurate communication with the public and must provide emotional and practical support. The ongoing pandemic of COVID-19 has caused not only notable morbidity and mortality in the world but also revealed significant systematic problems in the control and prevention of infectious diseases.

Acknowledgements

The authors express their sincere thanks to Ms. Fatma Rafiq Zakaria, Chairman of Maulana Azad Educational Trust Aurangabad Maharashtra, for her endless encouragement and support and for providing necessary facilities to carry out the above research work.

Abbreviations

ACE-2Angiotensin-converting enzyme-2
ARDSAcute respiratory distress syndrome
CoVCoronavirus
COVID-19Novel coronavirus infectious disease 2019
MERS-CoVMiddle East respiratory syndrome coronavirus
Nspsnon-structural proteins
ORFOpen reading frame
RBDReceptor-binding domain
RTCReplicase-transcriptase complex
SARS-CoVSevere acute respiratory syndrome coronavirus
WHOWorld Health Organization

Authors’ contributions

All authors participated in the work substantively and have approved the manuscript as submitted. The authors have no conflict of interest in the study. Drafting the article and critical revision of the article was carried out by SSS. Data collection for the formation of graphical abstract and various figures and tables was also contributed from her end. Conception or design of the work was carried out by SKS. He also contributed to the data collection for lifecycle, history, and origin. Data collection for pathogenesis and comparison of CoVs study was carried out by APJ. Data collection for diagnosis and treatment was carried out by MVKV. Data collection for clinical trials was carried out by DAN. Final approval of the version to be published was done by all the authors’ SSS, APJ, DAN, MVKV, and SKS. All the authors have read and approved the manuscript. Each author has agreed with the publication of the manuscript.

No funding was received for this work

Availability of data and materials

Ethics approval and consent to participate.

Not applicable

Consent for publication

Competing interests.

I, on behalf of all the authors, hereby declare that there is no significant financial, professional, or personal competing interest that might have influenced the performance or presentation of the work described in this manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Sana Saffiruddin Shaikh, Email: [email protected] .

Anooja P. Jose, Email: moc.liamg@89jpajoona .

Disha Anil Nerkar, Email: moc.liamg@89rakrenahsid .

Midhuna Vijaykumar KV, Email: moc.liamg@12321mvk .

Saquib Khaleel Shaikh, Email: moc.liamg@313biuqasks .

COMMENTS

  1. Conclusion

    Conclusion. This research has captured the diversity and complexity of people's experiences. ... there is still concern about the longer term harm and disruption that COVID-19 has caused to people and communities, and worry about the threat of future waves of infection. This report captures a number of specific suggestions for support. For ...

  2. Impact of COVID-19 on the social, economic, environmental and energy

    Conclusion. In this article, comprehensive analyses of energy, environmental pollution, and socio-economic impacts in the context of health emergency events and the global responses to mitigate the effects of these events have been provided. ... COVID-19 is a worldwide pandemic that puts a stop to economic activity and poses a severe risk to ...

  3. How to Write About Coronavirus in a College Essay

    Writing About COVID-19 in College Essays. Experts say students should be honest and not limit themselves to merely their experiences with the pandemic. The global impact of COVID-19, the disease ...

  4. COVID-19 pandemic and its impact on social relationships and health

    This essay examines key aspects of social relationships that were disrupted by the COVID-19 pandemic. It focuses explicitly on relational mechanisms of health and brings together theory and emerging evidence on the effects of the COVID-19 pandemic to make recommendations for future public health policy and recovery. We first provide an overview of the pandemic in the UK context, outlining the ...

  5. 12 moving essays about life during coronavirus

    Read these 12 moving essays about life during coronavirus. Artists, novelists, critics, and essayists are writing the first draft of history. A woman wearing a face mask in Miami. Alissa Wilkinson ...

  6. Analysis of the COVID-19 pandemic: lessons towards a more effective

    The pandemic of Coronavirus Disease 2019 (COVID-19) is a timely reminder of the nature and impact of Public Health Emergencies of International Concern. As of 12 January 2022, there were over 314 million cases and over 5.5 million deaths notified since the start of the pandemic. The COVID-19 pandemic takes variable shapes and forms, in terms of cases and deaths, in different regions and ...

  7. What We Learned About Ourselves During the COVID-19 Pandemic

    Alex, a writer and fellow disabled parent, found the freedom to explore a fuller version of herself in the privacy the pandemic provided. "The way I dress, the way I love, and the way I carry ...

  8. Covid 19 Essays: Examples, Topics, & Outlines

    The COVID-19 pandemic has had a profound impact on individuals, societies, and economies worldwide. Its multifaceted nature presents a wealth of topics suitable for academic exploration. This essay provides guidance on developing engaging and insightful essay topics related to COVID-19, offering a comprehensive range of perspectives to choose from.

  9. Editor in Chief's Introduction to Essays on the Impact of COVID-19 on

    The Journal of Vocational Behavior has not traditionally published essays, but these are such unusual times, and COVID-19 is so relevant to our collective research on work that I thought it was a good idea. I issued an invitation to the Associate Editors to submit a brief (3000 word) essay on the implications of COVID-19 on work and/or workers ...

  10. Impact of COVID-19 on people's livelihoods, their health and our food

    Reading time: 3 min (864 words) The COVID-19 pandemic has led to a dramatic loss of human life worldwide and presents an unprecedented challenge to public health, food systems and the world of work. The economic and social disruption caused by the pandemic is devastating: tens of millions of people are at risk of falling into extreme poverty ...

  11. The complexity of managing COVID-19: How important is good ...

    This essay is part of "Reimagining the global economy: Building back better in a post-COVID-19 world," a collection of 12 essays presenting new ideas to guide policies and shape debates in a ...

  12. Insights into the impact on daily life of the COVID-19 pandemic and

    1. Introduction. The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented changes in people's daily lives, with implications for mental health and well-being [1-4], both at the level of a given country's population, and when considering specific vulnerable groups [5-7].In order to mitigate the untoward impact of the pandemic (including lockdown) and support mental health ...

  13. Coronavirus disease 2019 (COVID-19): A literature review

    Conclusions. The current COVID-19 pandemic is clearly an international public health problem. There have been rapid advances in what we know about the pathogen, how it infects cells and causes disease, and clinical characteristics of disease. Due to rapid transmission, countries around the world should increase attention into disease ...

  14. PDF Lessons We Should Have Learned

    The anal-ogy that scientist-bureaucrats immediately latched onto in the early days of. COVID-19 was HIV, the virus that causes AIDS. "They (the This fact may surprise some readers, but it shouldn't because per-COVID response sonnel is policy. In the infectious disease community over the last.

  15. PDF COVID-19 pandemic and its impact on social relationships and health

    This essay examines key aspects of social relationships that were disrupted by the COVID-19 pandemic. It focuses explicitly on relational mechanisms of health and brings together theory and emerging evidence on the effects of the COVID-19 pandemic to make recommendations for future public health policy and recovery.

  16. Challenges and Opportunities in the Post-COVID-19 World

    The COVID-19 crisis has affected societies and economies around the globe and will permanently reshape our world as it continues to unfold. This collection of essays draws on the diverse insights of the World Economic Forum's Global Risks Report Advisory Board to look ahead and across a broad range of issues.

  17. An Introduction to COVID-19

    A novel coronavirus (CoV) named '2019-nCoV' or '2019 novel coronavirus' or 'COVID-19' by the World Health Organization (WHO) is in charge of the current outbreak of pneumonia that began at the beginning of December 2019 near in Wuhan City, Hubei Province, China [1-4]. COVID-19 is a pathogenic virus. From the phylogenetic analysis ...

  18. Coronavirus Essays: Examples, Topics, & Outlines

    COVID-19 Coronavirus. Abstract. First appearing in China in late 2019, the novel Coronavirus COVID-19 has become the most significant global pandemic event in a century. As of October 28, 2020 the total number of cases worldwide was 44 million with 1.17 million deaths. The United States has had an extremely politicized response to the virus ...

  19. 6 Overall Conclusions

    Since the onset of the coronavirus disease 2019 (COVID-19) pandemic in early 2020, many individuals infected with the virus that causes COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have continued to experience lingering symptoms for months or even years following infection.

  20. COVID-19 pandemic crisis—a complete outline of SARS-CoV-2

    COVID-19 was recently reported from Wuhan (China), which has cases in Thailand, Japan, South Korea, and the USA, ... Conclusion. COVID-19 has emerged as the most terrified and enormous viral infection. According to WHO, the coronavirus might become an endemic disease. Originating from China as a global pandemic, it has influenced people on a ...

  21. Review

    "We're Alone," a new collection of essays by the acclaimed novelist and short-story writer Edwidge Danticat, opens with an English translation of lines by the Haitian poet Roland Chassagne.